Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Neuroscience ; 554: 16-25, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39004410

RESUMO

The biological effects of dapagliflozin, a sodium-glucose cotransporter-2 (SGLT2) inhibitor, reveal its antioxidant and anti-inflammatory properties, suggesting therapeutic benefits beyond glycemic control. This study explores the neuroprotective effects of dapagliflozin in a rat model of autism spectrum disorder (ASD) induced by propionic acid (PPA), characterized by social interaction deficits, communication challenges, repetitive behaviors, cognitive impairments, and oxidative stress. Our research aims to find effective treatments for ASD, a condition with limited therapeutic options and significant impacts on individuals and families. PPA induces ASD-like symptoms in rodents, mimicking biochemical and behavioral features of human ASD. This study explores dapagliflozin's potential to mitigate these symptoms, providing insights into novel therapeutic avenues. The findings demonstrate that dapagliflozin enhances the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway and increases levels of neurotrophic and growth factors such as brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and insulin-like growth factor-binding protein-3 (IGFBP-3). Additionally, dapagliflozin reduces pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α) and interleukin-17 (IL-17), and decreases the oxidative stress marker malondialdehyde (MDA). Dapagliflozin's antioxidant properties support cognitive functions by modulating apoptotic mechanisms and enhancing antioxidant capacity. These combined effects contribute to reducing learning and memory impairments in PPA-induced ASD, highlighting dapagliflozin's potential as an adjunctive therapy for oxidative stress and inflammation-related cognitive decline in ASD. This study underscores the importance of exploring new therapeutic strategies targeting molecular pathways involved in the pathophysiology of ASD, potentially improving the quality of life for individuals affected by this disorder.


Assuntos
Antioxidantes , Transtorno do Espectro Autista , Compostos Benzidrílicos , Glucosídeos , Fator de Crescimento Insulin-Like I , Fator 2 Relacionado a NF-E2 , Propionatos , Animais , Glucosídeos/farmacologia , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/induzido quimicamente , Fator de Crescimento Insulin-Like I/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Masculino , Compostos Benzidrílicos/farmacologia , Propionatos/farmacologia , Antioxidantes/farmacologia , Ratos , Estresse Oxidativo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Modelos Animais de Doenças , Ratos Sprague-Dawley , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-39066789

RESUMO

Exposure to ionizing radiation leads to oxidative stress and neuroinflammation, resulting in neurocognitive impairments. Adverse effects are also associated with glutamate-induced excitotoxicity due to alterations in the composition of glutamate receptors. Ketamine, which is a noncompetitive NMDA glutamate receptor antagonist, has been stated to exert an impact on glutamatergic receptors. This study aims to reveal the possible alleviating or preventive effects of ketamine, which maintains glutamate homeostasis and decreases neurodegeneration, in a radiation-induced neurotoxicity model. Twenty-one female Wistar Queryrats were included in the study and 14 of these underwent whole brain irradiation (IR) with a 20 Gray single dose. Animals were allocated into three groups. Group 1: Normal control; Group 2: Placebo / IR + Saline; Group 3: IR + Ketamine. Ketamine was administered in addition to IR to rats in Group 3. The one-way ANOVA statistical test was used to compare groups. The value of p < 0.05 was considered statistically significant. When administered in addition to irradiation, ketamine treatment significantly increased scores in the three-chamber sociability test, open field test, and passive avoidance learning test. It also raised neuron counts in the hippocampal CA1 and CA3 regions as well as in Purkinje cells, and enhanced levels of brain-derived neurotrophic factor and tyrosine receptor kinase-B. Furthermore, ketamine administration resulted in decreased levels of glial fibrillary acidic protein, malondialdehyde, and tumor necrosis factor-alpha, indicating a reduction in neuroinflammation and oxidative stress. Ketamine exerted a significant protective impact on radiation-induced neurocognitive impairments and enhanced social-memory capacity by reducing neuronal loss, oxidative stress, and neuroinflammation. Our findings suggest that ketamine is beneficial in the treatment or prevention of neurodegeneration via the regulation of the BDNF/TrkB signaling pathway besides decreasing neuroinflammation and blocking NMDA receptors.

3.
Electromagn Biol Med ; 43(3): 135-144, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38708861

RESUMO

This paper presents the findings of a comprehensive study exploring the synergistic effects arising from the combination of microwave ablation and pulsed electromagnetic field (PEMF) therapy on prostate cancer cells. The research encompassed five distinct experimental groups, with continuous electric field measurements conducted during the entire treatment process. Group 1 and Group 2, subjected to microwave power below 350 W, exhibited specific electric field values of 72,800 V/m and 56,600 V/m, respectively. In contrast, Group 3 and Group 4, exposed to 80 W microwave power, displayed electric field levels of approximately 1450 V/m, while remaining free from any observable electrical discharges. The migratory and invasive capacities of PC3 cells were assessed through a scratch test in all groups. Notably, cells in Group 3 and Group 4, subjected to the combined treatment of microwave ablation and PEMF, demonstrated significantly accelerated migration in comparison to those in Groups 1 and 2. Additionally, Group 5 cells, receiving PEMF treatment in isolation, exhibited decreased migratory ability. These results strongly suggest that the combined approach of microwave ablation and PEMF holds promise as a potential therapeutic intervention for prostate cancer, as it effectively reduced cell viability, induced apoptosis, and impeded migration ability in PC3 cells. Moreover, the isolated use of PEMF demonstrated potential in limiting migratory capacity, which could hold critical implications in the fight against cancer metastasis.


In this study, a new approach to treat prostate cancer by combining microwave ablation (MWA) and pulsed electromagnetic field (PEMF) therapy is explored. We used specific devices like rectangular waveguides for MWA and circular coils for PEMF. The energy sources utilized in the study comprised a magnetron tube system, similar to the microwave source found in a microwave oven, for generating microwaves, and a signal generator for producing PEMF. We used specialized equipment for MWA and PEMF to maintain controlled conditions, ensuring precise and reliable results. The research included testing various groups of prostate cancer cells exposed to different intensities of microwave power and magnetic flux density. The movement of cancer cells in different groups was examined through a wound healing assay, where cancer cells were placed on a flat surface, and we observed whether they filled the gap created by their movement. Interestingly, cells treated with both MWA and PEMF demonstrated faster movement compared to cells treated with MWA alone or PEMF alone. This combined treatment not only effectively decreased cell movement but also showed the potential cell death. The results showed that the combination of MWA and PEMF suggest a promising therapeutic strategy. The findings contribute to the development of precise and effective therapies that could enhance patient outcomes and quality of life. However, further research and validation are essential before translating these findings into clinical applications.


Assuntos
Movimento Celular , Sobrevivência Celular , Campos Eletromagnéticos , Micro-Ondas , Neoplasias da Próstata , Masculino , Micro-Ondas/uso terapêutico , Humanos , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Neoplasias da Próstata/radioterapia , Sobrevivência Celular/efeitos da radiação , Apoptose/efeitos da radiação , Técnicas de Ablação , Células PC-3 , Linhagem Celular Tumoral
4.
Int J Dev Neurosci ; 84(5): 392-405, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38721665

RESUMO

The neuroprotective effects of choline chloride, an essential nutrient, a precursor for the acetylcholine and synthesis of membrane phospholipids, have been associated with neurological and neurodegenerative diseases. Its contribution to autism spectrum disorder, a neurodevelopmental disorder, remains unknown. Thus, we aimed to evaluate the effects of choline chloride on social behaviours, and histopathological and biochemical changes in a rat autism model. The autism model was induced by administration of 100 µg/kg lipopolysaccharide (LPS) on the 10th day of gestation. Choline chloride treatment (100 mg/kg/day) was commenced on PN5 and maintained until PN50. Social deficits were assessed by three-chamber sociability, open field, and passive avoidance learning tests. Tumour necrosis factor alpha (TNF-α), interleukin-2 (IL) and IL-17, nerve growth factor (NGF), and glutamate decarboxylase 67 (GAD67) levels were measured to assess neuroinflammatory responses. In addition, the number of hippocampal and cerebellar neurons and glial fibrillary acidic protein (GFAP) expression were evaluated. Social novelty and passive avoidance learning tests revealed significant differences in choline chloride-treated male rats compared with saline-treated groups. TNF-α, IL-2, and IL-17 were significantly decreased after choline chloride treatment in both males and females. NGF and GAD67 levels were unchanged in females, while there were significant differences in males. Histologically, significant changes in terms of gliosis were detected in hippocampal CA1 and CA3 regions and cerebellum in choline chloride-treated groups. The presence of ameliorative effects of choline chloride treatment on social behaviour and neuroinflammation through neuroinflammatory, neurotrophic, and neurotransmission pathways in a sex-dependent rat model of LPS-induced autism was demonstrated.


Assuntos
Transtorno Autístico , Colina , Modelos Animais de Doenças , Lipopolissacarídeos , Neurônios , Animais , Ratos , Masculino , Colina/farmacologia , Feminino , Lipopolissacarídeos/toxicidade , Transtorno Autístico/induzido quimicamente , Transtorno Autístico/patologia , Transtorno Autístico/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/metabolismo , Comportamento Social , Doenças Neuroinflamatórias/induzido quimicamente , Doenças Neuroinflamatórias/patologia , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/patologia , Caracteres Sexuais , Gravidez , Ratos Wistar , Aprendizagem da Esquiva/efeitos dos fármacos , Deficiências da Aprendizagem/induzido quimicamente , Deficiências da Aprendizagem/patologia
5.
Arch Pharm (Weinheim) ; 357(7): e2300575, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38593283

RESUMO

A series of tacrine-donepezil hybrids were synthesized as potential multifunctional anti-Alzheimer's disease (AD) compounds. For this purpose, tacrine and the benzylpiperidine moiety of donepezil were fused with a hydrazone group to achieve a small library of tacrine-donepezil hybrids. In agreement with the design, all compounds showed inhibitory activity toward both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with IC50 values in the low micromolar range. Kinetic studies on the most potent cholinesterase (ChE) inhibitors within the series showed a mixed-type inhibition mechanism on both enzymes. Also, the docking studies indicated that the compounds inhibit ChEs by dual binding site (DBS) interactions. Notably, tacrine-donepezil hybrids also exhibited significant neuroprotection against H2O2-induced cell death in a differentiated human neuroblastoma (SH-SY5Y) cell line at concentrations close to their IC50 values on ChEs and showed high to medium blood-brain barrier (BBB) permeability on human cerebral microvascular endothelial cells (HBEC-5i). Besides, the compounds do not cause remarkable toxicity in a human hepatocellular carcinoma cell line (HepG2) and SH-SY5Y cells. Additionally, the compounds were predicted to also have good bioavailability. Among the tested compounds, H4, H16, H17, and H24 stand out with their biological profile. Taken together, the proposed novel tacrine-donepezil scaffold represents a promising starting point for the development of novel anti-ChE multifunctional agents against AD.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Barreira Hematoencefálica , Butirilcolinesterase , Inibidores da Colinesterase , Donepezila , Desenho de Fármacos , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores , Tacrina , Tacrina/farmacologia , Tacrina/química , Humanos , Donepezila/farmacologia , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Doença de Alzheimer/tratamento farmacológico , Butirilcolinesterase/metabolismo , Relação Estrutura-Atividade , Acetilcolinesterase/metabolismo , Barreira Hematoencefálica/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Estrutura Molecular , Relação Dose-Resposta a Droga , Células Hep G2 , Linhagem Celular Tumoral
6.
Neurochem Res ; 49(4): 1034-1048, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38198049

RESUMO

The COVID-19 pandemic catalyzed the swift development and distribution of mRNA vaccines, including BNT162b2, to address the disease. Concerns have arisen about the potential neurodevelopmental implications of these vaccines, especially in susceptible groups such as pregnant women and their offspring. This study aimed to investigate the gene expression of WNT, brain-derived neurotrophic factor (BDNF) levels, specific cytokines, m-TOR expression, neuropathology, and autism-related neurobehavioral outcomes in a rat model. Pregnant rats received the COVID-19 mRNA BNT162b2 vaccine during gestation. Subsequent evaluations on male and female offspring included autism-like behaviors, neuronal counts, and motor performance. Molecular techniques were applied to quantify WNT and m-TOR gene expressions, BDNF levels, and specific cytokines in brain tissue samples. The findings were then contextualized within the extant literature to identify potential mechanisms. Our findings reveal that the mRNA BNT162b2 vaccine significantly alters WNT gene expression and BDNF levels in both male and female rats, suggesting a profound impact on key neurodevelopmental pathways. Notably, male rats exhibited pronounced autism-like behaviors, characterized by a marked reduction in social interaction and repetitive patterns of behavior. Furthermore, there was a substantial decrease in neuronal counts in critical brain regions, indicating potential neurodegeneration or altered neurodevelopment. Male rats also demonstrated impaired motor performance, evidenced by reduced coordination and agility. Our research provides insights into the effects of the COVID-19 mRNA BNT162b2 vaccine on WNT gene expression, BDNF levels, and certain neurodevelopmental markers in a rat model. More extensive studies are needed to confirm these observations in humans and to explore the exact mechanisms. A comprehensive understanding of the risks and rewards of COVID-19 vaccination, especially during pregnancy, remains essential.


Assuntos
Transtorno Autístico , COVID-19 , Efeitos Tardios da Exposição Pré-Natal , Humanos , Ratos , Animais , Gravidez , Feminino , Masculino , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transtorno Autístico/induzido quimicamente , Animais Recém-Nascidos , Vacinas contra COVID-19/efeitos adversos , Vacina BNT162 , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Vacinas de mRNA , Pandemias , COVID-19/prevenção & controle , Citocinas , RNA Mensageiro
7.
Neurosci Lett ; 818: 137575, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040406

RESUMO

Parkinson's disease (PD) is the second most common and progressive neurodegenerative disease. This experimental study was designed to investigate the neuroprotective effects of dexpanthenol on antioxidant and anti-inflammatory processes in a rotenone-induced Parkinson's disease model in rats. Twenty-one male rats were randomly divided into 2 groups. The rotenone group (n = 14) was administered rotenone by intrastriatal injection, and the vehicle group (n = 7) was administered DMSO with the same application route. All animals underwent rotational movement testing with apomorphine injection 10 days later. Those with Parkinson's disease model were randomly divided into 2 groups. While 1 ml/kg of saline was applied to the saline group (n = 7), 500 mg/kg was administered to the dexpanthenol group intraperitoneally for 28 days. After 28 days, all rats were euthanized and brain tissue was removed. While striatal areas were evaluated immunohistochemically, brain MDA, TNF-α, and HVA levels were measured to evaluate their anti-oxidative and anti-inflammatory effects. In the dexpanthenol group, the total count (p < 0.001) and intensity (p < 0.001) of dopaminergic neurons in the striatal areas increased compared to the saline group. It was revealed that MDA (nmol/g) (p < 0.001) and TNF-α (pg/g) (p < 0.001) levels decreased in the dexpanthenol group, while HVA (ng/mg) levels increased (p < 0.01). This study suggests that dexpanthenol may have a neuroprotective effect by reducing neuronal loss, oxidative damage, and neuroinflammation in the striatum in rats.


Assuntos
Doenças Neurodegenerativas , Fármacos Neuroprotetores , Doença de Parkinson , Ratos , Masculino , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Rotenona/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Estresse Oxidativo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Modelos Animais de Doenças
8.
Acta cir. bras ; 35(4): e202000404, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1130634

RESUMO

Abstract Purpose To analyze the effect of calcitriol treatment on acute colitis in an experimental rat model. Methods A total of 24 adult Sprague Dawley albino rats were randomly separated into 3 equal groups: control group (n:8), colitis group (n:8), calcitriol administered group (n:8). A single dose of acetic acid (1 ml of 4% solution) was administered intrarectally to induce colitis. Group 1 was given 1 ml/kg 0.9% NaCl intraperitoneally; rats belonging to Group 2 were administered calcitriol 1 µg/kg for 5 days. Results Plasma tumor necrosis factor alpha, Pentraxin 3, and malondialdehyde levels were significantly lower in the calcitriol administered colitis group than in the standard colitis group (p<0.01). In the Calcitriol group, there was a significant histological improvement in hyperemia, hemorrhage and necrotic areas in the epithelium compared to the placebo group (p <0.000). Conclusion The findings suggest that calcitriol may be an agent that could be used in acute colitis treatment.


Assuntos
Animais , Masculino , Calcitriol/uso terapêutico , Colite/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Valores de Referência , Proteína C-Reativa/análise , Componente Amiloide P Sérico/análise , Peroxidação de Lipídeos , Distribuição Aleatória , Doença Aguda , Reprodutibilidade dos Testes , Fator de Necrose Tumoral alfa/análise , Resultado do Tratamento , Ratos Sprague-Dawley , Colite/sangue , Colite/patologia , Estresse Oxidativo/genética , Modelos Animais de Doenças , Malondialdeído/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA