Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(7): 077002, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36018682

RESUMO

The discovery of superconductivity in infinite-layer nickelates has added a new family of materials to the fascinating growing class of unconventional superconductors. By incorporating the strongly correlated multiorbital nature of the low-energy electronic degrees of freedom, we compute the leading superconducting instability from magnetic fluctuations relevant for infinite-layer nickelates. Specifically, by properly including the doping dependence of the Ni d_{x^{2}-y^{2}} and d_{z^{2}} orbitals as well as the self-doping band, we uncover a transition from d-wave pairing symmetry to nodal s_{±} superconductivity, driven by strong fluctuations in the d_{z^{2}}-dominated orbital states. We discuss the properties of the resulting superconducting condensates in light of recent tunneling and penetration depth experiments probing the detailed superconducting gap structure of these materials.

2.
Faraday Discuss ; 237(0): 186-197, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35687084

RESUMO

Recent advances in the field of THz spectroscopy allow for controlled experiments to measure signatures of collective excitations in the conventional s-wave superconductor in the fifth harmonic generation current (FHG). Here, we analyze this process theoretically within the Anderson pseudospin formalism and use a periodic multicycle pulse setup, where the driving electromagnetic field points in the direction of a lattice vector. We investigate the interplay of the Higgs mode contribution to the fifth harmonic generation current and compare it to other contributing mechanisms, such as charge density fluctuations (CDF). Similar to the third harmonic generating current we show that the signal in the FHG is also dominated by the CDF. Most importantly, we predict a double peak signature in the frequency dependence of the intensity amplitude of the FHG current with one peak located at Ω = Δ0 (4Ω = 4Δ0) and another one at Ω = Δ0/2 (4Ω = 2Δ0). The resonant enhancement in the latter case is indicative of the higher order coupling to the Higgs mode or CDF, while the former is reminiscent of the THG describing the coupling of CDF and the Higgs mode with 2 single photons.

3.
Proc Natl Acad Sci U S A ; 118(51)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34916295

RESUMO

In cuprate superconductors, due to strong electronic correlations, there are multiple intertwined orders which either coexist or compete with superconductivity. Among them, the antiferromagnetic (AF) order is the most prominent one. In the region where superconductivity sets in, the long-range AF order is destroyed. Yet the residual short-range AF spin fluctuations are present up to a much higher doping, and their role in the emergence of the superconducting phase is still highly debated. Here, by using a spin-polarized scanning tunneling microscope, we directly visualize an emergent incommensurate AF order in the nearby region of Fe impurities embedded in the optimally doped Bi2Sr2CaCu2O8+δ (Bi2212). Remarkably, the Fe impurities suppress the superconducting coherence peaks with the gapped feature intact, but pin down the ubiquitous short-range incommensurate AF order. Our work shows an intimate relation between antiferromagnetism and superconductivity.

4.
Nat Commun ; 11(1): 1081, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32102995

RESUMO

Modern high-resolution microscopes are commonly used to study specimens that have dense and aperiodic spatial structure. Extracting meaningful information from images obtained from such microscopes remains a formidable challenge. Fourier analysis is commonly used to analyze the structure of such images. However, the Fourier transform fundamentally suffers from severe phase noise when applied to aperiodic images. Here, we report the development of an algorithm based on nonconvex optimization that directly uncovers the fundamental motifs present in a real-space image. Apart from being quantitatively superior to traditional Fourier analysis, we show that this algorithm also uncovers phase sensitive information about the underlying motif structure. We demonstrate its usefulness by studying scanning tunneling microscopy images of a Co-doped iron arsenide superconductor and prove that the application of the algorithm allows for the complete recovery of quasiparticle interference in this material.

5.
Phys Rev Lett ; 122(9): 097001, 2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30932539

RESUMO

We investigate a hybrid heterostructure with magnetic skyrmions (Sk) inside a chiral ferromagnet interfaced by a thin superconducting film via an insulating barrier. The barrier prevents electronic transport between the superconductor and the chiral magnet, such that the coupling can occur only through the magnetic fields generated by these materials. We find that Pearl vortices (PV) are generated spontaneously in the superconductor within the skyrmion radius, while anti-Pearl vortices (PV[over ¯]) compensating the magnetic moment of the Pearl vortices are generated outside of the Sk radius, forming an energetically stable topological hybrid structure. Finally, we analyze the interplay of skyrmion and vortex lattices and their mutual feedback on each other. In particular, we argue that the size of the skyrmions will be greatly affected by the presence of the vortices, offering another prospect of manipulating the skyrmionic size by the proximity to a superconductor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...