Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Biosci (Elite Ed) ; 16(1): 4, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38538523

RESUMO

Elevated concentrations of toxic organic compounds observed in food products pose serious dangers to human health. Both natural and artificial pollutants can cause food contamination. The stages of food production, packaging, transportation, and storage can also largely cause the appearance of undesirable substances in food products. The health consequences of ingesting food containing toxic contaminants range from mild gastroenteritis to deaths resulting from dysfunctional internal organs and neurological syndromes. The World Health Organization (WHO) sets recommendations for the content of such chemicals in food, including a minimum allowable concentration considered safe for human consumption. However, the control of food products from chemical pollutants is necessary. Moreover, fast, sensitive, and inexpensive methods are needed to detect them at the point of need. Currently, immune analysis methods are most widely used to determine pollutants in food. The development of fluorescence polarization immunoassay (FPIA) methods in a competitive format is a powerful and modern tool for detecting organic molecules in various matrices, thereby making FPIA methods useful for food safety applications. Due to the availability of portable devices for measuring the fluorescence polarization signal, FPIA methods can be used at the point of need. The variety of fluorescent labels and recognizing elements (receptors, monoclonal and polyclonal antibodies, and nanobodies) permits fluorescence polarization (FP) assays to detect significantly lower limits of organic substances. The FP assay is a homogeneous, fast, and quantitative method. The development of various formats of FP assays makes them promising in determining food pollutants. This review summarizes publications on FP analyses for detecting organic contaminants (pesticides, hormones, toxins, antibiotics, and other pharmaceuticals) in food products during 2018-2023. Further, it demonstrates the prospects for using this method to determine pollutants at the point of need and for detecting high molecular weight substances, fungi, and bacterial infections during food safety inspections.


Assuntos
Poluentes Ambientais , Inocuidade dos Alimentos , Humanos , Imunoensaio de Fluorescência por Polarização/métodos , Polarização de Fluorescência , Anticorpos
2.
Biomolecules ; 14(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38397407

RESUMO

Lysozyme is a well-known enzyme found in many biological fluids which plays an important role in the antibacterial protection of humans and animals. Lysozyme assays are used for the diagnosis of a number of diseases and utilized in immunohistochemistry, genetic and cellular engineering studies. The assaying methods are divided into two categories measuring either the concentration of lysozyme as a protein or its activity as an enzyme. While the first category of methods traditionally uses an enzyme-linked immunosorbent assay (ELISA), the methods for the determination of the enzymatic activity of lysozyme use either live bacteria, which is rather inconvenient, or natural peptidoglycans of high heterogeneity and variability, which leads to the low reproducibility of the assay results. In this work, we propose the use of a chemically synthesized substrate of a strictly defined structure to measure in a single experiment both the concentration of lysozyme as a protein and its enzymatic activity by means of the fluorescence polarization (FP) method. Chito-oligosaccharides of different chain lengths were fluorescently labeled and tested leading to the selection of the pentasaccharide as the optimal size tracer and the further optimization of the assay conditions for the accurate (detection limit 0.3 µM) and rapid (<30 min) determination of human lysozyme. The proposed protocol was applied to assay human lysozyme in tear samples and resulted in good correlation with the reference assay. The use of synthetic fluorescently labeled tracer, in contrast to natural peptidoglycan, in FP analysis allows for the development of a reproducible method for the determination of lysozyme activity.


Assuntos
Quitosana , Muramidase , Oligossacarídeos , Animais , Humanos , Quitosana/química , Indicadores e Reagentes/química , Muramidase/análise , Oligossacarídeos/química , Reprodutibilidade dos Testes
3.
Sensors (Basel) ; 23(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38067765

RESUMO

Analytical devices for bacterial detection are an integral part of modern laboratory medicine, as they permit the early diagnosis of diseases and their timely treatment. Therefore, special attention is directed to the development of and improvements in monitoring and diagnostic methods, including biosensor-based ones. A promising direction in the development of bacterial detection methods is optical sensor systems based on colorimetric and fluorescence techniques, the surface plasmon resonance, and the measurement of orientational effects. This review shows the detecting capabilities of these systems and the promise of electro-optical analysis for bacterial detection. It also discusses the advantages and disadvantages of optical sensor systems and the prospects for their further improvement.


Assuntos
Técnicas Biossensoriais , Dispositivos Ópticos , Ressonância de Plasmônio de Superfície/métodos , Técnicas Biossensoriais/métodos , Colorimetria
4.
Biosensors (Basel) ; 13(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38131765

RESUMO

Dibutyl phthalate (DBP) is widely used as a plasticizer in the production of polymeric materials to give them flexibility, strength and extensibility. However, due to its negative impact on human health, in particular reproductive functions and fetal development, the content of DBP must be controlled in food and the environment. The present study aims to develop a sensitive, fast and simple fluorescence polarization immunoassay (FPIA) using monoclonal antibodies derived against DBP (MAb-DBP) for its detection in open waters. New conjugates of DBP with various fluorescein derivatives were obtained and characterized: 5-aminomethylfluorescein (AMF) and dichlorotriazinylaminofluorescein (DTAF). The advantages of using the DBP-AMF conjugate in the FPIA method are shown, the kinetics of binding of this chemical with antibodies are studied, the analysis is optimized, and the concentration of monoclonal antibodies is selected for sensitivity analysis-16 nM. The calibration dependence of the fluorescence polarization signal for the detection of DBP was obtained. The observed IC50 (DBP concentration at which a 50% decrease in the fluorescence polarization signal occurs, 40 ng/mL) and the limit of detection (LOD, 7.5 ng/mL) values were improved by a factor of 45 over the previously described FPIA using polyclonal antibodies. This technique was tested by the recovery method, and the high percentage of DBP discovery in water ranged from 85 to 110%. Using the developed method, real water samples from Lake Onega were tested, and a good correlation was shown between the results of the determination of DBP by the FPIA method and GC-MS. Thus, the FPIA method developed in this work can be used to determine DBP in open-water reservoirs.


Assuntos
Dibutilftalato , Água , Humanos , Dibutilftalato/análise , Imunoensaio de Fluorescência por Polarização/métodos , Anticorpos Monoclonais , Cromatografia Gasosa-Espectrometria de Massas
5.
Biosensors (Basel) ; 13(12)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38131794

RESUMO

CRISPR/Cas12a is a potent biosensing tool known for its high specificity in DNA analysis. Cas12a recognizes the target DNA and acquires nuclease activity toward single-stranded DNA (ssDNA) probes. We present a straightforward and versatile approach to transforming common Cas12a-cleavable DNA probes into enhancing tools for fluorescence anisotropy (FA) measurements. Our study involved investigating 13 ssDNA probes with linear and hairpin structures, each featuring fluorescein at one end and a rotation-slowing tool (anchor) at the other. All anchors induced FA changes compared to fluorescein, ranging from 24 to 110 mr. Significant FA increases (up to 180 mr) were obtained by adding divalent metal salts (Mg2+, Ca2+, Ba2+), which influenced the rigidity and compactness of the DNA probes. The specific Cas12a-based recognition of double-stranded DNA (dsDNA) fragments of the bacterial phytopathogen Erwinia amylovora allowed us to determine the optimal set (probe structure, anchor, concentration of divalent ion) for FA-based detection. The best sensitivity was obtained using a hairpin structure with dC10 in the loop and streptavidin located near the fluorescein at the stem in the presence of 100 mM Mg2+. The detection limit of the dsDNA target was equal to 0.8 pM, which was eight times more sensitive compared to the common fluorescence-based method. The enhancing set ensured detection of single cells of E. amylovora per reaction in an analysis based on CRISPR/Cas12a with recombinase polymerase amplification. Our approach is universal and easy to implement. Combining FA with Cas12a offers enhanced sensitivity and signal reliability and could be applied to different DNA and RNA analytes.


Assuntos
Técnicas Biossensoriais , Sais , Sistemas CRISPR-Cas , Reprodutibilidade dos Testes , DNA , DNA de Cadeia Simples , Fluoresceína
6.
Anal Sci ; 39(12): 2001-2006, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37653216

RESUMO

Monitoring phycotoxin accumulation in marine products such as edible shellfish is a regulatory requirement in many countries. Therefore, a simple and rapid onsite quantification method is sought. Herein, we present a fluorescence polarization immunoassay (FPIA), a well-known one-step immunoassay, using a portable fluorescence polarization analyzer for domoic acid (DA), widely referred to as the primary toxin of amnesic shellfish poisoning (ASP). To establish FPIA for DA, the matrix effect of methanol, which is widely used to extract DA from shellfish, on FPIA was investigated. To validate this method, we performed a spike recovery test using oysters containing DA at a concentration equivalent to the regulatory limits of North America and the European Union (20 mg/kg). The recovery rate was found to be 79.4-114.7%, which is equivalent to that of the commercially available enzyme-linked immunosorbent assay (ELISA). We expect that this FPIA system will enable the quantitative onsite analysis of DA and significantly contribute to the safety of marine products.


Assuntos
Toxinas Marinhas , Frutos do Mar , Toxinas Marinhas/análise , Imunoensaio de Fluorescência por Polarização , Frutos do Mar/análise , Alimentos Marinhos/análise
7.
Biosensors (Basel) ; 13(6)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37367029

RESUMO

BPA is a chemical commonly used in the production of polymer-based materials that can have detrimental effects on the thyroid gland and impact human reproductive health. Various expensive methods, such as liquid and gas chromatography, have been suggested for detecting BPA. The fluorescence polarization immunoassay (FPIA) is an inexpensive and efficient homogeneous mix-and-read method that allows for high-throughput screening. FPIA offers high specificity and sensitivity and can be carried out in a single phase within a timeframe of 20-30 min. In this study, new tracer molecules were designed that linked the fluorescein fluorophore with and without a spacer to the bisphenol A moiety. To assess the influence of the C6 spacer on the sensitivity of an assay based on the respective antibody, hapten-protein conjugates were synthesized and assessed for performance in an ELISA setup, and this resulted in a highly sensitive assay with a detection limit of 0.05 g/L. The lowest limit of detection was reached by employing the spacer derivate in the FPIA and was 1.0 µg/L, working range from 2 to 155 µg/L. The validation of the methods was conducted using actual samples compared to LC-MS/MS, which served as the reference method. The FPIA and ELISA both demonstrated satisfactory concordance.


Assuntos
Disruptores Endócrinos , Humanos , Imunoensaio de Fluorescência por Polarização/métodos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Ensaio de Imunoadsorção Enzimática , Imunoensaio
8.
Biosensors (Basel) ; 13(4)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37185552

RESUMO

In this study, a homogeneous fluorescence polarization immunoassay (FPIA) for the detection of hazardous aquatic toxin okadaic acid (OA) contaminating environmental waters was for the first time developed. A conjugate of the analyte with a fluorophore based on a fluorescein derivative (tracer) was synthesized, and its interaction with specific anti-OA monoclonal antibodies (MAbs) was tested. A MAbs-tracer pair demonstrated highly affine immune binding (KD = 0.8 nM). Under optimal conditions, the limit of OA detection in the FPIA was 0.08 ng/mL (0.1 nM), and the working range of detectable concentrations was 0.4-72.5 ng/mL (0.5-90 nM). The developed FPIA was approbated for the determination of OA in real matrices: river water and seawater samples. No matrix effect of water was observed; therefore, no sample preparation was required before analysis. Due to this factor, the entire analytical procedure took less than 10 min. Using a compact portable fluorescence polarization analyzer enables the on-site testing of water samples. The developed analysis is very fast, easy to operate, and sensitive and can be extended to the determination of other aquatic toxins or low-molecular-weight water or food contaminants.


Assuntos
Anticorpos Monoclonais , Água , Imunoensaio de Fluorescência por Polarização/métodos , Ácido Okadáico , Fluoresceína
9.
Foods ; 12(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37107376

RESUMO

Erythromycin (ERY) is one of the most common macrolides applied in veterinary medicine to treat diseases or as a feed additive for animal growth promotion. Long-term irrational use of ERY could lead to residues in animal-derived food and the emergence of drug-resistant strains, posing potential threats to human health. In this study, a highly sensitive, specific, robust, and rapid fluorescence polarization immunoassay (FPIA) for the determination of ERY in milk has been described. Herein, to achieve high sensitivity, five tracers of ERY with different fluorescein structures were synthesized and paired with three monoclonal antibodies (mAbs). Under the optimized conditions, the combination of mAb 5B2 and tracer ERM-FITC achieved the lowest IC50 value in the FPIA with 7.39 µg/L for ERM. The established FPIA was used to detect ERY in milk, revealing a limit of detection (LOD) of 14.08 µg/L with recoveries of 96.08-107.77% and coefficients of variations (CVs) of 3.41-10.97%. The total detection time of the developed FPIA was less than 5 min from the addition of samples to the result readout. All the above results showed that the proposed FPIA in this study was a rapid, accurate, and simple method for the screening of ERY in milk samples.

10.
Biosensors (Basel) ; 12(11)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36421171

RESUMO

Combinations of sulfonamides (SAs) and antibacterial synergists (ASGs) are frequently used for treating infectious diseases and promoting growth for animals, which cause potential hazards to food safety and human health. To realize the simultaneous detection of SAs and ASGs in food, a homogeneous and high-throughput screening dual-wavelength fluorescence polarization immunoassay (DWFPIA) was developed. In this study, three SAs tracers and three ASGs tracers were synthesized by fluoresceins with different linkers and paired with their corresponding monoclonal antibodies (mAbs), respectively. To achieve a high sensitivity and broad specificity, the combination of tracers SADMPM-HDF with the longest linker paring mAb 10E6 for SAs and tracer HaptenA-DSCA paring mAb 9C9 for ASGs were chosen for the development of DWFPIA, achieving surprising IC50 values for 23 SAs below 100 µg L-1 and 5 ASGs below 50 µg L-1. The accuracy of DWFPIA was applied in real milk samples by typical sulfamethazine (SMZ) and trimethoprim (TMP), with recoveries of 81.7-97.2% and 78.6-103.6%, and coefficient of variations (CVs) below 18.9%, which could be completed within 15 min, including sample pretreatment. We firstly developed a simultaneous screening DWFPIA, covering all of the SAs and ASGs used in clinic and providing a great application potential in food safety analysis.


Assuntos
Leite , Sulfonamidas , Animais , Humanos , Imunoensaio de Fluorescência por Polarização , Leite/química , Sulfonamidas/análise , Sulfanilamida , Antibacterianos/análise , Anticorpos Monoclonais
11.
Micromachines (Basel) ; 13(9)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36144129

RESUMO

In this investigation, a double immunochromatographic analysis (ICA) of two relevant phycotoxins, domoic acid (DA) and okadaic acid (OA), was developed for the first time. The ICA was performed in the indirect competitive format using gold nanoparticles conjugated with anti-species antibodies. Under optimal conditions, the instrumental detection limits/cutoffs for simultaneous detection of DA and OA were 1.2/100 and 0.1/2.5 ng/mL, respectively. The time of the assay was 18 min. The ICA was applied to test seawater and a large panel of seafood, including mussels, tiger shrimps, octopuses, whelks, crabs, and scallops. The proposed simple sample preparation method for seafood takes only 20 min. For seawater, a dilution by buffer was implemented. The assay recoveries varied from 80.8% to 124.5%. The competitive potential of the proposed technique as a tool to control natural water and seafood samples is determined by its simplicity, rapidity, and sensitivity.

12.
Int J Mol Sci ; 23(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35563267

RESUMO

Short oligonucleotides are widely used for the construction of aptamer-based sensors and logical bioelements to modulate aptamer-ligand binding. However, relationships between the parameters (length, location of the complementary region) of oligonucleotides and their influence on aptamer-ligand interactions remain unclear. Here, we addressed this task by comparing the effects of short complementary oligonucleotides (ssDNAs) on the structure and ligand-binding ability of an aptamer and identifying ssDNAs' features that determine these effects. Within this, the interactions between the OTA-specific G-quadruplex aptamer 1.12.2 (5'-GATCGGGTGTGGGTGGCGTAAAGGGA GCATCGGACA-3') and 21 single-stranded DNA (ssDNA) oligonucleotides complementary to different regions of the aptamer were studied. Two sets of aptamer-ssDNA dissociation constants were obtained in the absence and in the presence of OTA by isothermal calorimetry and fluorescence anisotropy, respectively. In both sets, the binding constants depend on the number of hydrogen bonds formed in the aptamer-ssDNA complex. The ssDNAs' having more than 23 hydrogen bonds with the aptamer have a lower aptamer dissociation constant than for aptamer-OTA interactions. The ssDNAs' having less than 18 hydrogen bonds did not affect the aptamer-OTA affinity. The location of ssDNA's complementary site in the aptamer affeced the kinetics of the interaction and retention of OTA-binding in aptamer-ssDNA complexes. The location of the ssDNA site in the aptamer G-quadruplex led to its unfolding. In the presence of OTA, the unfolding process was longer and takes from 20 to 70 min. The refolding in the presence of OTA was possible and depends on the length and location of the ssDNA's complementary site. The location of the ssDNA site in the tail region led to its rapid displacement and wasn't affecting the G-qaudruplex's integrity. It makes the tail region more perspective for the development of ssDNA-based tools using this aptamer.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Quadruplex G , Ocratoxinas , Anticorpos , Aptâmeros de Nucleotídeos/química , DNA de Cadeia Simples , Polarização de Fluorescência , Ligantes
13.
Foods ; 11(6)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35327249

RESUMO

This Special Issue of Foods, Application of Antibody and Immunoassay for Food Safety, contains ten papers that were refereed and selected in accordance with the usual editorial standards of the journal [...].

14.
Foods ; 11(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35053951

RESUMO

(Strept)avidin-biotin technology is frequently used in immunoassay systems to improve their analytical properties. It is known from clinical practice that many (strept)avidin-biotin-based tests provide false results when analyzing patient samples with a high content of endogenous biotin. No specific investigation has been carried out regarding possible interferences from avidin (AVI) and biotin (B7) contained in food matrices in (strept)avidin-biotin-based immunoanalytical systems for food safety. Two kinds of competitive ELISAs for bacitracin (BT) and colistin (COL) determination in food matrices were developed based on conventional hapten-protein coating conjugates and biotinylated BT and COL bound to immobilized streptavidin (SAV). Coating SAV-B7-BT and SAV-B7-COL complexes-based ELISAs provided 2- and 15-times better sensitivity in BT and COL determination, corresponding to 0.6 and 0.3 ng/mL, respectively. Simultaneously with the determination of the main analytes, these kinds of tests were used as competitive assays for the assessment of AVI or B7 content up to 10 and 1 ng/mL, respectively, in food matrices (egg, infant milk formulas enriched with B7, chicken and beef liver). Matrix-free experiments with AVI/B7-enriched solutions showed distortion of the standard curves, indicating that these ingredients interfere with the adequate quantification of analytes. Summarizing the experience of the present study, it is recommended to avoid immunoassays based on avidin-biotin interactions when analyzing biosamples containing these endogenous factors or enriched with B7.

15.
Biochemistry (Mosc) ; 87(12): 1679-1688, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36717456

RESUMO

Due to its unique structure and properties, human breast milk lactoferrin (hLF) has many nutritional and health-promoting functions in infants, including protection against inflammation and bacterial infections. The lack of LF in breastmilk or formula can result in the weakening of the infant's immune system. Noncompetitive polarization fluorescence immunoassay (FPIA) is a promising method for hLF quantification in milk and dairy products, which does not require the separation of the bound and free protein and allows to avoid time-consuming sample preparation. The use of fluorescently labeled single-domain camelid antibodies (nanobodies) for protein recognition in FPIA makes it possible to quantify relatively large antigens, in particular, hLF. In this work, we used previously obtained fluorescein isothiocyanate (FITC)-conjugated anti-hLF5 and anti-hLF16 nanobodies, which selectively recognized two different human lactoferrin epitopes, but did not bind to goat lactoferrin. The kinetics of hLF interaction with the FITC-labeled nanobodies was studied. The dissociation constant (KD) for the anti-LF5 and antiLF16 nanobodies was 3.2 ± 0.3 and 4.9 ± 0.4 nM, respectively, indicating the high-affinity binding of these nanobodies to hLF. We developed the FPIA protocol and determined the concentration of FITC-labeled anti-hLF5 and anti-hLF16 nanobodies that provided the optimal fluorescence signal and stable fluorescence polarization value. We also studied the dependence of fluorescence polarization on the hLF concentration in the noncompetitive FPIA with FITC-anti-hLF5 nanobody. The detection limit for hLF was 2.1 ± 0.2 µg/ml and the linear range for determining the hLF concentration was 3-10 µg/ml. FPIA is commonly used to assay low-molecular-weight substances; however, the use of fluorescently labeled nanobodies allows quantification of high-molecular-weight proteins. Here, we demonstrated that FPIA with fluorescently labeled nanobodies can be used for hLF quantification in milk.


Assuntos
Anticorpos de Domínio Único , Feminino , Humanos , Animais , Anticorpos de Domínio Único/análise , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/metabolismo , Imunoensaio de Fluorescência por Polarização/métodos , Lactoferrina/análise , Lactoferrina/química , Lactoferrina/metabolismo , Leite/química , Leite/metabolismo , Fluoresceína-5-Isotiocianato , Fluoresceína/química
16.
Anal Bioanal Chem ; 413(23): 5733-5742, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34476526

RESUMO

Palladium nanoparticles (PdNPs) are composed mainly of inert noble metals, and their outstanding properties have attracted wide attention. PdNPs are not only capable of mimicking the oxidase-like characteristics of natural bio-enzymes, but they also present a clear black band in the test zone. In this work, the synthesized PdNPs promoted a transformation of colorless tetramethylbenzidine (TMB) to a blue oxidation product of TMB, providing a Km value of 0.09 mM for TMB, and revealing the good catalytic performance of the synthesized PdNPs. For both signal generation and amplification, PdNPs effectively replaced natural bio-enzymes as a new labeling tag. Thus, the PdNP-based enzyme-free single-step immunoassays were successfully developed for efficient and sensitive detection of glycocholic acid (GCA). Under optimal conditions, a noticeable linear relationship was identified by the enzyme-linked immunosorbent assay (ELISA) over a range of 8-2390 ng/mL, while the visual limit of detection (vLOD) in the constructed lateral flow immunoassay (LFA) was 10 ng/mL for GCA. The recovery rate in spiked urine samples obtained by the ELISA ranged from 84.2 to 117.9%, which was consistent with the results in LFA. The present work demonstrates the potential of PdNPs as labeling matrices in enzyme-free single-step immunoassays.


Assuntos
Ácido Glicocólico/análise , Imunoensaio/métodos , Nanopartículas Metálicas/química , Paládio/química , Catálise , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática , Ácido Glicocólico/urina , Humanos , Limite de Detecção
17.
Anal Bioanal Chem ; 413(17): 4459-4469, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34137913

RESUMO

In this paper, five fluorescein-labeled dehydroepiandrosterone (DHEA) derivatives (tracers) with different chain lengths between the fluorescein and hapten were synthesized and featured so as to establish a fluorescence polarization immunoassay (FPIA) for DHEA detection in human urine samples with previously prepared polyclonal antibody against DHEA. The outcomes of the structure of tracer on FPIA sensitivity were investigated. Under the optimal condition, the fluorescence polarization value (FP) decreases linearly in DHEA concentration, ranging from 1.6 to 243.3 ng mL-1, with the limit of detection of 1.1 ng mL-1 and IC50 value of 25.1 ng mL-1. Moreover, the developed FPIA was time-saving as it could complete the detection within 3 min. FPIA and commercial enzyme-linked immunosorbent assay kit were both applied to analyze the spiked human urine samples with DHEA. Excellent recoveries (92.1-108.0%) and satisfactory correlation coefficient (R2 = 0.98) were acquired with the two methods, indicating that the developed FPIA was a fast and efficient screening immunoassay with accuracy and sensitivity for DHEA detection in human urine samples. Graphical abstract.


Assuntos
Desidroepiandrosterona/urina , Imunoensaio de Fluorescência por Polarização/métodos , Fluoresceína/química , Imunoensaio de Fluorescência por Polarização/economia , Corantes Fluorescentes/química , Humanos , Limite de Detecção , Fatores de Tempo
18.
Food Chem ; 360: 130020, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34000636

RESUMO

Peptides obtained from phage display libraries are valuable reagents for small-molecule immunoassays. However, their application in fluorescence polarization immunoassays (FPIAs) is limited by phage particles. Here, monomer, dendrimer-like dimer, tetramer peptidomimetic and anti-immunocomplex tracers were designed and synthesized using lysine as special scaffolds and spacers to develop competitive and noncompetitive FPIAs for benzothiostrobin. The affinity between tracers and monoclonal antibodies or immunocomplexes increased with the tracer valence. A higher signal-to-noise ratio and sensitivity could be generated in the FPIAs based on tetramer tracers. The sensitivities of competitive (50% inhibitory concentration) and noncompetitive (50% saturation concentration) FPIAs were 19.71 ± 4.65 and 40.43 ± 2.73 ng mL-1, respectively. The spiked recoveries were 78.3%-105.2% with relative standard deviations (RSDs) of 0.7%-15.4% for the competitive FPIA, while 78.7%-115.3% with RSDs of 0.7%-12.5% for the noncompetitive FPIA. The amounts of benzothiostrobin in rice detected by the FPIAs were consistent with those detected by high performance liquid chromatography.


Assuntos
Acrilatos/análise , Benzotiazóis/análise , Dendrímeros/química , Fluoresceína-5-Isotiocianato/química , Imunoensaio de Fluorescência por Polarização/métodos , Peptídeos/química
19.
Anal Methods ; 13(16): 1919-1924, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33913980

RESUMO

The concentration of glycocholic acid (GCA) in urine and blood is an important biomarker for liver cancer. Monitoring of GCA depends to a large extent on the availability of appropriate analytical techniques. In this work, based on the immobilization of GCA-OVA onto the sensor chip surface, a label-free competitive inhibition immunoassay for the determination of GCA with the surface plasmon resonance (SPR) technique was developed. The proposed SPR immunosensor is simple to prepare, recyclable and exhibits excellent sensitivity to GCA (a linear range of 13.3-119.4 ng mL-1 and a limit of detection (LOD) of 2.5 ng mL-1), which was 14 times lower than that of the traditional immunoassay. Excellent recoveries and correlation between these two methods were observed (R2 = 0.995). Hence, it can be proved that the SPR immunosensor could be used to achieve rapid and sensitive quantitative detection of GCA in real urine samples and meet clinical needs.


Assuntos
Técnicas Biossensoriais , Ressonância de Plasmônio de Superfície , Ácido Glicocólico , Imunoensaio , Limite de Detecção
20.
Talanta ; 228: 122174, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33773707

RESUMO

A hapten-protein conjugate with copper nanoparticles (Hap-Car-BSA@CuNPs) was first synthesized in the present work for the determination of carbaryl. The copper nanoparticles (CuNPs) of the conjugate were used as electrochemical labels in the direct solid-phase competitive determination of carbaryl residues in flour from different crops. The signal was read by linear sweep anodic stripping voltammetry (LSASV) of copper (through the electrochemical stripping of accumulated elemental copper) on a gold-graphite electrode (GGE). To form a recognition receptor layer of monoclonal antibodies against the carbaryl on the surface of the GGE, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and 1-hydroxy-2,5-pyrrolidinedione (NHS) were used as the best covalent cross-linkers. The concentrations of the antibodies and the Hap-Car-BSA@CuNPs conjugate were optimized for carbaryl detection by the electrochemical immunosensor. The electrochemical immunosensor can be used for highly sensitive determination of carbaryl residues in flour samples in the concentration range 0.8-32.3 µg·kg-1, with a limit of detection 0.08 µg·kg-1. The present work paves the path for a novel method for monitoring carbaryl in other food products, drinks, and soil samples.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanopartículas , Carbaril , Cobre , Técnicas Eletroquímicas , Ouro , Imunoensaio , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...