Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(33): 7354-7360, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37561999

RESUMO

This study investigates the oxidation state of ceria thin films' surface and subsurface under 100 mTorr hydrogen using ambient pressure X-ray photoelectron spectroscopy. We examine the influence of the initial oxidation state and sample temperature (25-450 °C) on the interaction with hydrogen. Our findings reveal that the oxidation state during hydrogen interaction involves a complex interplay between oxidizing hydride formation, reducing thermal reduction, and reducing formation of hydroxyls followed by water desorption. In all studied conditions, the subsurface exhibits a higher degree of oxidation compared to the surface, with a more subtle difference for the reduced sample. The reduced samples are significantly hydroxylated and covered with molecular water at 25 °C. We also investigate the impact of water vapor impurities in hydrogen. We find that although 1 × 10-6 Torr water vapor oxidizes ceria, it is probably not the primary driver behind the oxidation of reduced ceria in the presence of hydrogen.

2.
J Am Chem Soc ; 145(12): 6730-6740, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36916242

RESUMO

The reactions of H2, CO2, and CO gas mixtures on the surface of Cu at 200 °C, relevant for industrial methanol synthesis, are investigated using a combination of ambient pressure X-ray photoelectron spectroscopy (AP-XPS) and atmospheric-pressure near edge X-ray absorption fine structure (AtmP-NEXAFS) spectroscopy bridging pressures from 0.1 mbar to 1 bar. We find that the order of gas dosing can critically affect the catalyst chemical state, with the Cu catalyst maintained in a metallic state when H2 is introduced prior to the addition of CO2. Only on increasing the CO2 partial pressure is CuO formation observed that coexists with metallic Cu. When only CO2 is present, the surface oxidizes to Cu2O and CuO, and the subsequent addition of H2 partially reduces the surface to Cu2O without recovering metallic Cu, consistent with a high kinetic barrier to H2 dissociation on Cu2O. The addition of CO to the gas mixture is found to play a key role in removing adsorbed oxygen that otherwise passivates the Cu surface, making metallic Cu surface sites available for CO2 activation and subsequent conversion to CH3OH. These findings are corroborated by mass spectrometry measurements, which show increased H2O formation when H2 is dosed before rather than after CO2. The importance of maintaining metallic Cu sites during the methanol synthesis reaction is thereby highlighted, with the inclusion of CO in the gas feed helping to achieve this even in the absence of ZnO as the catalyst support.

3.
J Phys Chem Lett ; 14(10): 2644-2650, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36888973

RESUMO

The interaction between submonolayers of methanol and water on Cu(111) is studied at 95-160 K temperature range with surface-sensitive infrared spectroscopy using isotopically labeled molecules. The initial interaction of methanol with the preadsorbed amorphous solid water at 95 K is through hydrogen-bonding with the dangling hydroxyl groups of water. Upon increasing the temperature up to 140 K, methanol and deuterated water form H-bonded structures which allow hydrogen-deuterium exchange between the hydroxyl group of methanol and the deuterated water. The evolution of the O-D and O-H stretching bands indicate that the hydrogen transfer is dominant at around 120-130 K, slightly below the desorption temperature of methanol. Above 140 K, methanol desorbs and a mixture of hydrogen-related water isotopologues remains on the surface. The isotopic composition of this mixture versus the initial D2O:CH3OH ratio supports a potential exchange mechanism via hydrogen hopping between alternating methanol and water molecules in a hydrogen-bonded network.

4.
J Phys Chem C Nanomater Interfaces ; 126(31): 13433-13440, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35983314

RESUMO

Using atomic force microscopy in the pressure range of 10-10 mbar to several tens of mbar at room temperature, we demonstrate the restructuring of nanostructured KBr surfaces assisted by the presence of water, methanol, and ethanol vapors and the formation of solvation islands. On a flat KBr surface, the two-dimensional solvation islands start nucleating at the step edges and grow with time and with increasing relative pressure. Solvation islands of water wet the terraces; however, solvation islands of methanol and ethanol are localized around the step edges and do not wet the terraces. Two processes are observed on nanostructured KBr surfaces: the movement of the atomic steps and the formation of solvation islands. The first process takes place at comparatively lower pressures at around 1% relative pressure, whereas the second process starts at higher pressures at around 25% relative pressure and above. Furthermore, the second process takes place only after the complete relocation of the step edges and thereby formation of a nearly flat surface. This implies that there is a competition between the restructuring of the atomic steps and solvation layer formation, as both processes require solvated ions. Unlike in the case of a flat surface, solvation islands of alcohols wet the restructured surface due to a higher density of low-coordination sites.

5.
Chem Rev ; 121(2): 962-1006, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33290057

RESUMO

This is a Review of recent studies on surface structures of crystalline materials in the presence of gases in the mTorr to atmospheric pressure range, which brings surface science into a brand new direction. Surface structure is not only a property of the material but also depends on the environment surrounding it. This Review emphasizes that high/ambient pressure goes hand-in-hand with ambient temperature, because weakly interacting species can be densely covering surfaces at room temperature only when in equilibrium with a sufficiently high gas pressure. At the same time, ambient temperatures help overcome activation barriers that impede diffusion and reactions. Even species with weak binding energy can have residence lifetimes on the surface that allow them to trigger reconstructions of the atomic structure. The consequences of this are far from trivial because under ambient conditions the structure of the surface dynamically adapts to its environment and as a result completely new structures are often formed. This new era of surface science emerged and spread rapidly after the retooling of characterization techniques that happened in the last two decades. This Review is focused on the new surface structures enabled particularly by one of the new tools: high-pressure scanning tunneling microscopy. We will cover several important surfaces that have been intensely scrutinized, including transition metals, oxides, and alloys.

6.
J Am Chem Soc ; 142(18): 8312-8322, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32281380

RESUMO

The reaction of CO and O2 with submonolayer and multilayer CoOx films on Pt(111), to produce CO2, was investigated at room temperature in the mTorr pressure regime. Using operando ambient pressure X-ray photoelectron spectroscopy and high pressure scanning tunneling microscopy, as well as density functional theory calculations, we found that the presence of oxygen vacancies in partially oxidized CoOx films significantly enhances the CO oxidation activity to form CO2 upon exposure to mTorr pressures of CO at room temperature. In contrast, CoO films without O-vacancies are much less active for CO2 formation at RT, and CO only adsorbed in the form of carbonate species that are stable up to 260 °C. On submonolayer CoOx islands, the carbonates form preferentially at island edges, deactivating the edge sites for CO2 formation, even while the reaction proceeds inside the islands. These results provide a detailed understanding of CO oxidation pathways on systems where noble metals such as Pt interact with reducible oxides.

7.
Phys Chem Chem Phys ; 22(34): 18806-18814, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32242587

RESUMO

Methanol is a promising chemical for the safe and efficient storage of hydrogen, where methanol conversion reactions can generate a hydrogen-containing gas mixture. Understanding the chemical state of the catalyst over which these reactions occur and the interplay with the adsorbed species present is key to the design of improved catalysts and process conditions. Here we study polycrystalline Cu foils using ambient pressure X-ray spectroscopies to reveal the Cu oxidation state and identify the adsorbed species during partial oxidation (CH3OH + O2), steam reforming (CH3OH + H2O), and autothermal reforming (CH3OH + O2 + H2O) of methanol at 200 °C surface temperature and in the mbar pressure range. We find that the Cu surface remains highly metallic throughout partial oxidation and steam reforming reactions, even for oxygen-rich conditions. However, for autothermal reforming the Cu surface shows significant oxidation towards Cu2O. We rationalise this behaviour on the basis of the shift in equilibrium of the CH3OH* + O* ⇌ CH3O* + OH* reaction step caused by the addition of H2O.

8.
J Am Chem Soc ; 140(21): 6575-6581, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29738671

RESUMO

We studied the structure of the copper-cobalt (CuCo) surface alloy, formed by Co deposition on Cu(110), in dynamic equilibrium with CO. Using scanning tunneling microscopy (STM), we found that, in vacuum at room temperature and at low Co coverage, clusters of a few Co atoms substituting Cu atoms form at the surface. At CO pressures in the Torr range, we found that up to 2.5 CO molecules can bind on a single Co atom, in carbonyl-like configurations. Based on high-resolution STM images, together with density functional theory calculations, we determined the most stable CuCo cluster structures formed with bound CO. Such carbonyl-like formation manifests in shifts in the binding energy of the Co core-level peaks in X-ray photoelectron spectra, as well as shifts in the vibrational modes of adsorbed CO in infrared reflection absorption spectra. The multiple CO adsorption on a Co site weakens the Co-CO bond and thus reduces the C-O bond scission probability. Our results may explain the different product distribution, including higher selectivity toward alcohol formation, when bimetallic CuCo catalysts are used compared to pure Co.

9.
J Phys Chem B ; 122(2): 548-554, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28749680

RESUMO

Using ambient pressure X-ray photoelectron spectroscopy (APXPS) and high pressure scanning tunneling microscopy (HPSTM), we show that in equilibrium with 0.01-0.2 Torr of methanol vapor, at room temperature, the Cu(100) surface is covered with methoxy species forming a c(2 × 2) overlayer structure. In contrast, no methoxy is formed if the surface is saturated with an ordered oxygen layer, even when the methanol pressure is 0.2 Torr. At oxygen coverages below saturation, methanol dissociates and reacts with the atomic oxygen, producing methoxy and formate on the surface, and formaldehyde that desorbs to the gas phase. Unlike the case of pure carbon monoxide and carbon dioxide, methanol does not induce the restructuring of the Cu(100) surface. These results provide insight into catalytic anhydrous production of aldehydes.

10.
Phys Chem Chem Phys ; 19(24): 16251-16256, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28608893

RESUMO

Templating insulating surfaces at the nanoscale is an interesting prospect for applications that involve the adsorption of molecules or nanoparticles where electronic decoupling of the adsorbed species from the substrate is needed. In this study, we present a method to structure alkali halide surfaces at the nanoscale using a combination of low temperature plasma exposure and annealing, and characterize the surfaces by atomic force microscopy. We find that nanostructurating can be controlled by the duration of the exposure, the atomic mass of the plasma gas and the subsequent step-by-step annealing process. In contrast to previous studies with electron or high energy (few keV) ion irradiation, our approach of employing moderate particle energy (10-15 eV Ar+ or He+ ions) results in fine nanostructuring at length scales of nanometers and even single atom vacancies.

11.
J Am Chem Soc ; 138(26): 8207-11, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27280375

RESUMO

Ambient-pressure X-ray photoelectron spectroscopy (APXPS) and high-pressure scanning tunneling microscopy (HPSTM) were used to study the structure and chemistry of model Cu(100) and Cu(111) catalyst surfaces in the adsorption and dissociation of CO2. It was found that the (100) face is more active in dissociating CO2 than the (111) face. Atomic oxygen formed after the dissociation of CO2 poisons the surface by blocking further adsorption of CO2. This "self-poisoning" mechanism explains the need to mix CO into the industrial feed for methanol production from CO2, as it scavenges the chemisorbed O. The HPSTM images show that the (100) surface breaks up into nanoclusters in the presence of CO2 at 20 Torr and above, producing active kink and step sites. If the surface is precovered with atomic oxygen, no such nanoclustering occurs.

12.
Langmuir ; 32(22): 5526-31, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27180868

RESUMO

The supramolecular self-assembly of copper(II) octaethylporphyrin (CuOEP) and octaethylporphyrin (H2OEP) on graphitic surfaces immersed in organic solvents (dichlorobenzene, dodecane) is studied using scanning tunneling microscopy (STM) and Raman spectroscopy. STM reveals that the self-assembled structure of CuOEP in 1,2-dichlorobenzene is significantly altered by dissolved oxygen within the solvent. Raman spectroscopy reveals that the presence of the oxygen alters the molecule-substrate interaction, which is attributed to the adsorption of oxygen on the Cu center of the CuOEP, which is facilitated by electron transfer from the graphitic surface. Such oxygen-induced changes are not observed for H2OEP, indicating that the metal center of CuOEP plays a critical role. When the solvent is dodecane, we find that solvation effects dominate. CuOEP adsorbed on graphitic surfaces provides a model system relevant to the study of the transport and activation of oxygen by enzymes and other complexes.

13.
J Phys Chem Lett ; 7(9): 1622-7, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27082434

RESUMO

Atmospheric pressure X-ray photoelectron spectroscopy (XPS) is demonstrated using single-layer graphene membranes as photoelectron-transparent barriers that sustain pressure differences in excess of 6 orders of magnitude. The graphene serves as a support for catalyst nanoparticles under atmospheric pressure reaction conditions (up to 1.5 bar), where XPS allows the oxidation state of Cu nanoparticles and gas phase species to be simultaneously probed. We thereby observe that the Cu(2+) oxidation state is stable in O2 (1 bar) but is spontaneously reduced under vacuum. We further demonstrate the detection of various gas-phase species (Ar, CO, CO2, N2, O2) in the pressure range 10-1500 mbar including species with low photoionization cross sections (He, H2). Pressure-dependent changes in the apparent binding energies of gas-phase species are observed, attributable to changes in work function of the metal-coated grids supporting the graphene. We expect atmospheric pressure XPS based on this graphene membrane approach to be a valuable tool for studying nanoparticle catalysis.


Assuntos
Grafite/química , Pressão Atmosférica , Tamanho da Partícula , Espectroscopia Fotoeletrônica , Propriedades de Superfície
14.
Science ; 351(6272): 475-8, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26823421

RESUMO

The (111) surface of copper (Cu), its most compact and lowest energy surface, became unstable when exposed to carbon monoxide (CO) gas. Scanning tunneling microscopy revealed that at room temperature in the pressure range 0.1 to 100 Torr, the surface decomposed into clusters decorated by CO molecules attached to edge atoms. Between 0.2 and a few Torr CO, the clusters became mobile in the scale of minutes. Density functional theory showed that the energy gain from CO binding to low-coordinated Cu atoms and the weakening of binding of Cu to neighboring atoms help drive this process. Particularly for softer metals, the optimal balance of these two effects occurs near reaction conditions. Cluster formation activated the surface for water dissociation, an important step in the water-gas shift reaction.

15.
J Am Chem Soc ; 137(34): 11186-90, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26275662

RESUMO

The chemical structure of a Cu(111) model catalyst during the CO oxidation reaction in the CO+O2 pressure range of 10-300 mTorr at 298-413 K was studied in situ using surface sensitive X-ray photoelectron and adsorption spectroscopy techniques [X-ray photoelectron spectroscopy (XPS) and near edge X-ray adsorption fine structure spectroscopy (NEXAFS)]. For O2:CO partial pressure ratios below 1:3, the surface is covered by chemisorbed O and by a thin (∼1 nm) Cu2O layer, which covers completely the surface for ratios above 1:3 between 333 and 413 K. The Cu2O film increases in thickness and exceeds the escape depth (∼3-4 nm) of the XPS and NEXAFS photoelectrons used for analysis at 413 K. No CuO formation was detected under the reaction conditions used in this work. The main reaction intermediate was found to be CO2(δ-), with a coverage that correlates with the amount of Cu2O, suggesting that this phase is the most active for CO oxidation.

16.
ACS Appl Mater Interfaces ; 6(14): 11609-16, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-24960311

RESUMO

The effect of helium on the tungsten microstructure was investigated first by exposure to a radio frequency driven helium plasma with fluxes of the order of 1 × 10(19) m(-2) s(-1) and second by helium incorporation via magnetron sputtering. Roughening of the surface and the creation of pinholes were observed when exposing poly- and nanocrystalline tungsten samples to low-flux plasma. A coating process using an excess of helium besides argon in the process gas mixture leads to a porous thin film and a granular surface structure whereas gas mixture ratios of up to 50% He/Ar (in terms of their partial pressures) lead to a dense structure. The presence of helium in the deposited film was confirmed with glow-discharge optical emission spectroscopy and thermal desorption measurements. Latter revealed that the highest fraction of the embedded helium atoms desorb at approximately 1500 K. Identical plasma treatments at various temperatures showed strongest modifications of the surface at 1500 K, which is attributed to the massive activation of helium singly bond to a single vacancy inside the film. Thus, an efficient way of preparing nanostructured tungsten surfaces and porous tungsten films at low fluxes was found.

17.
ACS Nano ; 8(6): 5932-8, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24873393

RESUMO

Graphene was synthesized from pentacenequinone molecules on a Cu(111) surface using a three-step thermal treatment process: (1) self-assembly of a single layer molecular film at 190 °C, (2) formation of covalent bonding between adjacent molecules at intermediate temperatures, (3) thermal dehydrogenation and in-plane carbon diffusion at 600 °C. Transformation of the surface conformation was monitored with bimodal atomic force microscopy at the atomic scale and was corroborated with core-level X-ray photoelectron spectroscopy. A strong C═O···H-C hydrogen bonding involving the quinone moiety plays a key role in graphene growth, whereas conventional pentacene simply desorbs from the substrate during the same process. The most significant achievement of this proposed technique is obtaining graphene a couple of hundred degrees lower than standard techniques. Intrinsic defects due to carbon deficiency and the defects intentionally introduced by the microscope tip were also investigated with atomic-scale imaging.

18.
J Phys Chem Lett ; 5(15): 2626-31, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26277954

RESUMO

We demonstrate the critical role of the specific atomic arrangement at step sites in the restructuring processes of low-coordinated surface atoms at high adsorbate coverage. By using high-pressure scanning tunneling microscopy (HP-STM) and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS), we have investigated the reconstruction of Pt(332) (with (111)-oriented triangular steps) and Pt(557) surfaces (with (100)-oriented square steps) in the mixture of CO and C2H4 in the Torr pressure range at room temperature. CO creates Pt clusters at the step edges on both surfaces, although the clusters have different shapes and densities. A subsequent exposure to a similar partial pressure of C2H4 partially reverts the clusters on Pt(332). In contrast, the cluster structure is barely changed on Pt(557). These different reconstruction phenomena are attributed to the fact that the 3-fold (111)-step sites on Pt(332) allows for adsorption of ethylidyne-a strong adsorbate formed from ethylene-that does not form on the 4-fold (100)-step sites on Pt(557).

19.
Beilstein J Nanotechnol ; 3: 852-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23365799

RESUMO

Single- and multilayer graphene and highly ordered pyrolytic graphite (HOPG) were exposed to a pure hydrogen low-temperature plasma (LTP). Characterizations include various experimental techniques such as photoelectron spectroscopy, Raman spectroscopy and scanning probe microscopy. Our photoemission measurement shows that hydrogen LTP exposed HOPG has a diamond-like valence-band structure, which suggests double-sided hydrogenation. With the scanning tunneling microscopy technique, various atomic-scale charge-density patterns were observed, which may be associated with different C-H conformers. Hydrogen-LTP-exposed graphene on SiO(2) has a Raman spectrum in which the D peak to G peak ratio is over 4, associated with hydrogenation on both sides. A very low defect density was observed in the scanning probe microscopy measurements, which enables a reverse transformation to graphene. Hydrogen-LTP-exposed HOPG possesses a high thermal stability, and therefore, this transformation requires annealing at over 1000 °C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...