Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Mol Ther Nucleic Acids ; 35(1): 102130, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38375504

RESUMO

Adenosine deaminases acting on RNA (ADARs) are endogenous enzymes catalyzing the deamination of adenosines to inosines, which are then read as guanosines during translation. This ability to recode makes ADAR an attractive therapeutic tool to edit genetic mutations and reprogram genetic information at the mRNA level. Using the endogenous ADARs and guiding them to a selected target has promising therapeutic potential. Indeed, different studies have reported several site-directed RNA-editing approaches for making targeted base changes in RNA molecules. The basic strategy has been to use guide RNAs (gRNAs) that hybridize and form a double-stranded RNA (dsRNA) structure with the desired RNA target because of ADAR activity in regions of dsRNA formation. Here we report on a novel pipeline for identifying disease-causing variants as candidates for RNA editing, using a yeast-based screening system to select efficient gRNAs for editing of nonsense mutations, and test them in a human cell line reporter system. We have used this pipeline to modify the sequence of transcripts carrying nonsense mutations that cause inherited retinal diseases in the FAM161A, KIZ, TRPM1, and USH2A genes. Our approach can serve as a basis for gene therapy intervention in knockin mouse models and ultimately in human patients.

2.
NPJ Genom Med ; 9(1): 16, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409211

RESUMO

The majority of human genetic diseases are caused by single nucleotide variants (SNVs) in the genome sequence. Excitingly, new genomic techniques known as base editing have opened efficient pathways to correct erroneous nucleotides. Due to reliance on deaminases, which have the capability to convert A to I(G) and C to U, the direct applicability of base editing might seem constrained in terms of the range of mutations that can be reverted. In this evaluation, we assess the potential of DNA and RNA base editing methods for treating human genetic diseases. Our findings indicate that 62% of pathogenic SNVs found within genes can be amended by base editing; 30% are G>A and T>C SNVs that can be corrected by DNA base editing, and most of them by RNA base editing as well, and 29% are C>T and A>G SNVs that can be corrected by DNA base editing directed to the complementary strand. For each, we also present several factors that affect applicability such as bystander and off-target occurrences. For cases where editing the mismatched nucleotide is not feasible, we introduce an approach that calculates the optimal substitution of the deleterious amino acid with a new amino acid, further expanding the scope of applicability. As personalized therapy is rapidly advancing, our demonstration that most SNVs can be treated by base editing is of high importance. The data provided will serve as a comprehensive resource for those seeking to design therapeutic base editors and study their potential in curing genetic diseases.

3.
Trends Genet ; 40(3): 250-259, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38160061

RESUMO

Recent studies have underscored the pivotal role of adenosine-to-inosine RNA editing, catalyzed by ADAR1, in suppressing innate immune interferon responses triggered by cellular double-stranded RNA (dsRNA). However, the specific ADAR1 editing targets crucial for this regulatory function remain elusive. We review analyses of transcriptome-wide ADAR1 editing patterns and their evolutionary dynamics, which offer valuable insights into this unresolved query. The growing appreciation of the significance of immunogenic dsRNAs and their editing in inflammatory and autoimmune diseases and cancer calls for a more comprehensive understanding of dsRNA immunogenicity, which may promote our understanding of these diseases and open doors to therapeutic avenues.


Assuntos
Doenças Autoimunes , RNA de Cadeia Dupla , Humanos , RNA de Cadeia Dupla/genética , Imunidade Inata/genética , Transcriptoma/genética
4.
Cell Metab ; 36(1): 48-61.e6, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38128529

RESUMO

A major hypothesis for the etiology of type 1 diabetes (T1D) postulates initiation by viral infection, leading to double-stranded RNA (dsRNA)-mediated interferon response and inflammation; however, a causal virus has not been identified. Here, we use a mouse model, corroborated with human islet data, to demonstrate that endogenous dsRNA in beta cells can lead to a diabetogenic immune response, thus identifying a virus-independent mechanism for T1D initiation. We found that disruption of the RNA editing enzyme adenosine deaminases acting on RNA (ADAR) in beta cells triggers a massive interferon response, islet inflammation, and beta cell failure and destruction, with features bearing striking similarity to early-stage human T1D. Glycolysis via calcium enhances the interferon response, suggesting an actionable vicious cycle of inflammation and increased beta cell workload.


Assuntos
Diabetes Mellitus Tipo 1 , Camundongos , Animais , Humanos , Edição de RNA , RNA de Cadeia Dupla , Interferons/genética , Interferons/metabolismo , Inflamação
5.
Nat Commun ; 14(1): 8212, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081817

RESUMO

Millions of adenosines are deaminated throughout the transcriptome by ADAR1 and/or ADAR2 at varying levels, raising the question of what are the determinants guiding substrate specificity and how these differ between the two enzymes. We monitor how secondary structure modulates ADAR2 vs ADAR1 substrate selectivity, on the basis of systematic probing of thousands of synthetic sequences transfected into cell lines expressing exclusively ADAR1 or ADAR2. Both enzymes induce symmetric, strand-specific editing, yet with distinct offsets with respect to structural disruptions: -26 nt for ADAR2 and -35 nt for ADAR1. We unravel the basis for these differences in offsets through mutants, domain-swaps, and ADAR homologs, and find it to be encoded by the differential RNA binding domain (RBD) architecture. Finally, we demonstrate that this offset-enhanced editing can allow an improved design of ADAR2-recruiting therapeutics, with proof-of-concept experiments demonstrating increased on-target and potentially decreased off-target editing.


Assuntos
Adenosina Desaminase , Proteínas de Ligação a RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Especificidade por Substrato , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Linhagem Celular , Transcriptoma
6.
NAR Genom Bioinform ; 5(4): lqad092, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37859800

RESUMO

Given the current status of coronavirus disease 2019 (COVID-19) as a global pandemic, it is of high priority to gain a deeper understanding of the disease's development and how the virus impacts its host. Adenosine (A)-to-Inosine (I) RNA editing is a post-transcriptional modification, catalyzed by the ADAR family of enzymes, that can be considered part of the inherent cellular defense mechanism as it affects the innate immune response in a complex manner. It was previously reported that various viruses could interact with the host's ADAR enzymes, resulting in epigenetic changes both to the virus and the host. Here, we analyze RNA-seq of nasopharyngeal swab specimens as well as whole-blood samples of COVID-19 infected individuals and show a significant elevation in the global RNA editing activity in COVID-19 compared to healthy controls. We also detect specific coding sites that exhibit higher editing activity. We further show that the increment in editing activity during the disease is temporary and returns to baseline shortly after the symptomatic period. These significant epigenetic changes may contribute to the immune system response and affect adverse outcomes seen in post-viral cases.

7.
Dev Cell ; 58(15): 1350-1364.e10, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37321215

RESUMO

During aging, the loss of metabolic homeostasis drives a myriad of pathologies. A central regulator of cellular energy, the AMP-activated protein kinase (AMPK), orchestrates organismal metabolism. However, direct genetic manipulations of the AMPK complex in mice have, so far, produced detrimental phenotypes. Here, as an alternative approach, we alter energy homeostasis by manipulating the upstream nucleotide pool. Using the turquoise killifish, we mutate APRT, a key enzyme in AMP biosynthesis, and extend the lifespan of heterozygous males. Next, we apply an integrated omics approach to show that metabolic functions are rejuvenated in old mutants, which also display a fasting-like metabolic profile and resistance to high-fat diet. At the cellular level, heterozygous cells exhibit enhanced nutrient sensitivity, reduced ATP levels, and AMPK activation. Finally, lifelong intermittent fasting abolishes the longevity benefits. Our findings suggest that perturbing AMP biosynthesis may modulate vertebrate lifespan and propose APRT as a promising target for promoting metabolic health.


Assuntos
Proteínas Quinases Ativadas por AMP , Longevidade , Masculino , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Envelhecimento/metabolismo , Homeostase , Vertebrados/metabolismo , Metabolismo Energético
8.
PLoS Comput Biol ; 19(4): e1010923, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37036839

RESUMO

Adenosine-to-inosine RNA editing is essential to prevent undesired immune activation. This diverse process alters the genetic content of the RNA and may recode proteins, change splice sites and miRNA targets, and mimic genomic mutations. Recent studies have associated or implicated aberrant editing with pathological conditions, including cancer, autoimmune diseases, and neurological and psychiatric conditions. RNA editing patterns in cardiovascular tissues have not been investigated systematically so far, and little is known about its potential role in cardiac diseases. Some hints suggest robust editing in this system, including the fact that ADARB1 (ADAR2), the main coding-sequence editor, is most highly expressed in these tissues. Here we characterized RNA editing in the heart and arteries and examined a contributory role to the development of atherosclerosis and two structural heart diseases -Ischemic and Dilated Cardiomyopathies. Analyzing hundreds of RNA-seq samples taken from the heart and arteries of cardiac patients and controls, we find that global editing, alongside inflammatory gene expression, is increased in patients with atherosclerosis, cardiomyopathies, and heart failure. We describe a single recoding editing site and suggest it as a target for focused research. This recoding editing site in the IGFBP7 gene is one of the only evolutionary conserved sites between mammals, and we found it exhibits consistently increased levels of editing in these patients. Our findings reveal that RNA editing is abundant in arteries and is elevated in several key cardiovascular conditions. They thus provide a roadmap for basic and translational research of RNA as a mediator of atherosclerosis and non-genetic cardiomyopathies.


Assuntos
Aterosclerose , Cardiomiopatias , Neoplasias , Animais , Humanos , Edição de RNA/genética , RNA , Cardiomiopatias/genética , Aterosclerose/genética , Mamíferos/genética
9.
PLoS Genet ; 19(3): e1010661, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36877730

RESUMO

The most abundant form of RNA editing in metazoa is the deamination of adenosines into inosines (A-to-I), catalyzed by ADAR enzymes. Inosines are read as guanosines by the translation machinery, and thus A-to-I may lead to protein recoding. The ability of ADARs to recode at the mRNA level makes them attractive therapeutic tools. Several approaches for Site-Directed RNA Editing (SDRE) are currently under development. A major challenge in this field is achieving high on-target editing efficiency, and thus it is of much interest to identify highly potent ADARs. To address this, we used the baker yeast Saccharomyces cerevisiae as an editing-naïve system. We exogenously expressed a range of heterologous ADARs and identified the hummingbird and primarily mallard-duck ADARs, which evolved at 40-42°C, as two exceptionally potent editors. ADARs bind to double-stranded RNA structures (dsRNAs), which in turn are temperature sensitive. Our results indicate that species evolved to live with higher core body temperatures have developed ADAR enzymes that target weaker dsRNA structures and would therefore be more effective than other ADARs. Further studies may use this approach to isolate additional ADARs with an editing profile of choice to meet specific requirements, thus broadening the applicability of SDRE.


Assuntos
Adenosina Desaminase , Temperatura Corporal , Adenosina Desaminase/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA de Cadeia Dupla/genética , RNA Mensageiro/genética , Inosina/genética , Inosina/metabolismo
10.
Nature ; 617(7959): 147-153, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36949200

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is characterized by aggressive local invasion and metastatic spread, leading to high lethality. Although driver gene mutations during PDA progression are conserved, no specific mutation is correlated with the dissemination of metastases1-3. Here we analysed RNA splicing data of a large cohort of primary and metastatic PDA tumours to identify differentially spliced events that correlate with PDA progression. De novo motif analysis of these events detected enrichment of motifs with high similarity to the RBFOX2 motif. Overexpression of RBFOX2 in a patient-derived xenograft (PDX) metastatic PDA cell line drastically reduced the metastatic potential of these cells in vitro and in vivo, whereas depletion of RBFOX2 in primary pancreatic tumour cell lines increased the metastatic potential of these cells. These findings support the role of RBFOX2 as a potent metastatic suppressor in PDA. RNA-sequencing and splicing analysis of RBFOX2 target genes revealed enrichment of genes in the RHO GTPase pathways, suggesting a role of RBFOX2 splicing activity in cytoskeletal organization and focal adhesion formation. Modulation of RBFOX2-regulated splicing events, such as via myosin phosphatase RHO-interacting protein (MPRIP), is associated with PDA metastases, altered cytoskeletal organization and the induction of focal adhesion formation. Our results implicate the splicing-regulatory function of RBFOX2 as a tumour suppressor in PDA and suggest a therapeutic approach for metastatic PDA.


Assuntos
Processamento Alternativo , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Processamento Alternativo/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Animais , Metástase Neoplásica , Adesões Focais
11.
J Invest Dermatol ; 143(6): 933-943.e8, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36502941

RESUMO

Atopic dermatitis (AD) is associated with dysregulated type 1 IFN‒mediated responses, in parallel with the dominant type 2 inflammation. However, the pathophysiology of this dysregulation is largely unknown. Adenosine-to-inosine RNA editing plays a critical role in immune regulation by preventing double-stranded RNA recognition by MDA5 and IFN activation. We studied global adenosine-to-inosine editing in AD to elucidate the role played by altered editing in the pathophysiology of this disease. Analysis of three RNA-sequencing datasets of AD skin samples revealed reduced levels of adenosine-to-inosine RNA editing in AD. This reduction was seen globally throughout Alu repeats as well as in coding genes and in specific pre-mRNA loci expected to create long double-stranded RNA, the main substrate of MDA5 leading to type I IFN activation. Consistently, IFN signature genes were upregulated. In contrast, global editing was not altered in systemic lupus erythematosus and systemic sclerosis, despite IFN activation. Our results indicate that altered editing leading to impairment of the innate immune response may be involved in the pathogenesis of AD. Possibly, it may be relevant for additional autoimmune and inflammatory diseases.


Assuntos
Dermatite Atópica , RNA de Cadeia Dupla , Humanos , RNA de Cadeia Dupla/genética , Dermatite Atópica/genética , Edição de RNA/genética , Adenosina/metabolismo , Inosina/genética , Inosina/metabolismo , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo
12.
Phys Rev Lett ; 129(7): 071601, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36018686

RESUMO

We study the quantum Lyapunov exponent λ_{L} in theories with spacetime-independent disorder. We first derive self-consistency equations for the two- and four-point functions for products of N models coupled by disorder at large N, generalizing the equations appearing in SYK-like models. We then study families of theories in which the disorder coupling is an exactly marginal deformation, allowing us to follow λ_{L} from weak to strong coupling. We find interesting behaviors, including a discontinuous transition into chaos, mimicking classical KAM theory.

14.
Nat Commun ; 13(1): 1184, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246538

RESUMO

RNA editing by adenosine deaminases changes the information encoded in the mRNA from its genomic blueprint. Editing of protein-coding sequences can introduce novel, functionally distinct, protein isoforms and diversify the proteome. The functional importance of a few recoding sites has been appreciated for decades. However, systematic methods to uncover these sites perform poorly, and the full repertoire of recoding in human and other mammals is unknown. Here we present a new detection approach, and analyze 9125 GTEx RNA-seq samples, to produce a highly-accurate atlas of 1517 editing sites within the coding region and their editing levels across human tissues. Single-cell RNA-seq data shows protein recoding contributes to the variability across cell subpopulations. Most highly edited sites are evolutionary conserved in non-primate mammals, attesting for adaptation. This comprehensive set can facilitate understanding of the role of recoding in human physiology and diseases.


Assuntos
Adenosina , RNA , Adenosina/genética , Adenosina/metabolismo , Animais , Genoma , Humanos , Inosina/genética , Inosina/metabolismo , Mamíferos/genética , RNA/metabolismo , Edição de RNA
15.
Prog Retin Eye Res ; 89: 101029, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34839010

RESUMO

Inherited retinal diseases (IRDs) are a clinically complex and heterogenous group of visual impairment phenotypes caused by pathogenic variants in at least 277 nuclear and mitochondrial genes, affecting different retinal regions, and depleting the vision of affected individuals. Genes that cause IRDs when mutated are unique by possessing differing genotype-phenotype correlations, varying inheritance patterns, hypomorphic alleles, and modifier genes thus complicating genetic interpretation. Next-generation sequencing has greatly advanced the identification of novel IRD-related genes and pathogenic variants in the last decade. For this review, we performed an in-depth literature search which allowed for compilation of the Global Retinal Inherited Disease (GRID) dataset containing 4,798 discrete variants and 17,299 alleles published in 31 papers, showing a wide range of frequencies and complexities among the 194 genes reported in GRID, with 65% of pathogenic variants being unique to a single individual. A better understanding of IRD-related gene distribution, gene complexity, and variant types allow for improved genetic testing and therapies. Current genetic therapeutic methods are also quite diverse and rely on variant identification, and range from whole gene replacement to single nucleotide editing at the DNA or RNA levels. IRDs and their suitable therapies thus require a range of effective disease modelling in human cells, granting insight into disease mechanisms and testing of possible treatments. This review summarizes genetic and therapeutic modalities of IRDs, provides new analyses of IRD-related genes (GRID and complexity scores), and provides information to match genetic-based therapies such as gene-specific and variant-specific therapies to the appropriate individuals.


Assuntos
Doenças Retinianas , Distrofias Retinianas , Estudos de Associação Genética , Humanos , Mutação , Linhagem , Retina , Doenças Retinianas/genética , Doenças Retinianas/terapia , Distrofias Retinianas/genética
16.
Genome Res ; 31(12): 2354-2361, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34667118

RESUMO

Base editors are dedicated engineered deaminases that enable directed conversion of specific bases in the genome or transcriptome in a precise and efficient manner, and hold promise for correcting pathogenic mutations. A major concern limiting application of this powerful approach is the issue of off-target edits. Several recent studies have shown substantial off-target RNA activity induced by base editors and demonstrated that off-target mutations may be suppressed by improved deaminases versions or optimized guide RNAs. Here, we describe a new class of off-target events that are invisible to the established methods for detection of genomic variations and were thus far overlooked. We show that nonspecific, seemingly stochastic, off-target events affect a large number of sites throughout the genome or the transcriptome, and account for the majority of off-target activity. We develop and employ a different, complementary approach that is sensitive to the stochastic off-target activity and use it to quantify the abundant off-target RNA mutations due to current, optimized deaminase editors. We provide a computational tool to quantify global off-target activity, which can be used to optimize future base editors. Engineered base editors enable directed manipulation of the genome or transcriptome at single-base resolution. We believe that implementation of this computational approach would facilitate design of more specific base editors.

17.
Trends Genet ; 37(8): 685-687, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33975753

RESUMO

The characteristics of RNA editing, including the lower risk compared with genome editing, may loosen the ethical barriers that are currently imposed on genetic engineering, thus opening new possibilities for research, therapy, and human enhancement. We should start considering the future ethical and social implications of this new and promising technology.


Assuntos
Sistemas CRISPR-Cas/genética , Engenharia Genética/ética , Edição de RNA/ética , Edição de Genes/ética , Genoma Humano/genética , Humanos
18.
Nucleic Acids Res ; 49(8): 4325-4337, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33872356

RESUMO

A-to-I RNA editing is a common post transcriptional mechanism, mediated by the Adenosine deaminase that acts on RNA (ADAR) enzymes, that increases transcript and protein diversity. The study of RNA editing is limited by the absence of editing maps for most model organisms, hindering the understanding of its impact on various physiological conditions. Here, we mapped the vertebrate developmental landscape of A-to-I RNA editing, and generated the first comprehensive atlas of editing sites in zebrafish. Tens of thousands unique editing events and 149 coding sites were identified with high-accuracy. Some of these edited sites are conserved between zebrafish and humans. Sequence analysis of RNA over seven developmental stages revealed high levels of editing activity in early stages of embryogenesis, when embryos rely on maternal mRNAs and proteins. In contrast to the other organisms studied so far, the highest levels of editing were detected in the zebrafish ovary and testes. This resource can serve as the basis for understanding of the role of editing during zebrafish development and maturity.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Edição de RNA , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Adenosina/genética , Animais , Código Genético , Inosina/genética
19.
Mol Cell ; 81(11): 2374-2387.e3, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33905683

RESUMO

Adenosine-to-inosine editing is catalyzed by ADAR1 at thousands of sites transcriptome-wide. Despite intense interest in ADAR1 from physiological, bioengineering, and therapeutic perspectives, the rules of ADAR1 substrate selection are poorly understood. Here, we used large-scale systematic probing of ∼2,000 synthetic constructs to explore the structure and sequence context determining editability. We uncover two structural layers determining the formation and propagation of A-to-I editing, independent of sequence. First, editing is robustly induced at fixed intervals of 35 bp upstream and 30 bp downstream of structural disruptions. Second, editing is symmetrically introduced on opposite sites on a double-stranded structure. Our findings suggest a recursive model for RNA editing, whereby the structural alteration induced by the editing at one site iteratively gives rise to the formation of an additional editing site at a fixed periodicity, serving as a basis for the propagation of editing along and across both strands of double-stranded RNA structures.


Assuntos
Adenosina Desaminase/genética , Adenosina/metabolismo , Inosina/metabolismo , Edição de RNA , RNA de Cadeia Dupla/genética , Proteínas de Ligação a RNA/genética , Células A549 , Adenosina/genética , Adenosina Desaminase/metabolismo , Animais , Pareamento de Bases , Células HEK293 , Humanos , Inosina/genética , Células MCF-7 , Camundongos , Células NIH 3T3 , Conformação de Ácido Nucleico , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/metabolismo
20.
Transl Psychiatry ; 11(1): 137, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627618

RESUMO

Post-traumatic-stress-disorder (PTSD) is a stress-related condition that may develop after exposure to a severe trauma-event. One of the core brain areas that is considered to be a key regulatory region of PTSD is the amygdala. Specifically, the central amygdala (CeA) is involved in emotion processing and associative fear learning memory, two main circuits involved in PTSD. Long term dysregulation of trauma-related emotional processing may be caused by neuroadaptations that affect gene expression. The adenosine-(A) to-inosine (I) RNA editing machinery is a post-transcriptional process that converts a genomic encoded A to I and is critical for normal brain function and development. Such editing has the potential to increase the transcriptome diversity, and disruption of this process has been linked to various central nervous system disorders. Here, we employed a unique animal model to examine the possibility that the RNA editing machinery is involved in PTSD. Detection of RNA editing specifically in the CeA revealed changes in the editing pattern of the 5-HT2C serotonin receptor (5-HT2CR) transcript accompanied by dynamic changes in the expression levels of the ADAR family enzymes (ADAR and ADARb1). Deamination by ADAR and ADARb1 enzymes induces conformational changes in the 5-HT2CR that decrease the G-protein-coupling activity, agonist affinity, and thus serotonin signaling. Significantly, a single intra-CeA administration of a 5-HT2CR pharmacological antagonist produced a robust alleviation of PTSD-like behaviors (that was maintained for three weeks) as well as single systemic treatment. This work may suggest the way to a new avenue in the understanding of PTSD regulation.


Assuntos
Núcleo Central da Amígdala , Transtornos de Estresse Pós-Traumáticos , Animais , Medo , Edição de RNA , Receptor 5-HT2C de Serotonina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...