Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121896, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36183536

RESUMO

In this study we have investigated 2-ethylamino-4-nitro-6-methyl pyridine N-oxide (2E6M) molecule that belongs to important group of Proton Coupled Electron Transfer (PCET) compounds where both the charge transfer (CT) and proton transfer processes in excited states may proceed. In this case, this is possible due to the donors and acceptors of electrons and protons in this system, as well as due to the presence of intramolecular {N-H… O [2,566(3) Å}, hydrogen bond.Using stationary and time-resolved spectroscopy, as well as quantum chemical calculations on the DFT and TD DFT B3LYP/6-31G (d,p) level of theory, a partial CT nature of the S0 â†’ S1 transition in both tautomeric forms (N and T) has been revealed. Additionally, the excited state intramolecular proton transfer (ESIPT) process shown to be more favorable in apolar and weakly polar solvents than in strongly polar acetonitrile (EN(S1) > ET(S1). The displacement of charge from the amine group and the ring to the nitro group has been observed on the changing shapes of the HOMO and LUMO orbitals involved in this transition what further quantitatively allowed to realize the increase in the dipole moment of both forms in the electronic excited state. The calculations show that in two solvents with radically different polarity (heptane, acetonitrile), dipole moments of both forms are very similar [in acetonitrile uN(S1) and uT(S1) are 11.0 D and 11.5 D, respectively]. Hence, in polar media both forms can be stabilized in a comparable manner. This made it difficult for us to assign a single fluorescent band in acetonitrile to one of the tautomeric forms. However, it seems that due to application of time-resolved spectroscopy, this problem has been clarified. The TCSPC decay curve in acetonitrile with an ultrafast lifetime assigned to the (N) form, along with the femtosecond up-conversion signals that demonstrated only an ultrafast decay without any rise-time of a new excited (T) species, allowed us to conclude that in 2E6M in strongly polar solvent the ESIPT does not occur.The unique fluorescence band origins from the (N) form. In protic solvents, the significant kinetic isotopic effects have provided us with conclusive evidence for the presence of the solvent-assisted ESIPT process. Furthermore, it was noticed that the fluorescence lifetime in D2O (100-120 fs) estimated from the up-conversion signals is about 40 times shorter relative to methanol. This may suggest that the sine qua non for the ESIPT process in 2E6M in protic solvents is the formation of a complex with a solvent molecule in the hydrogen bridge between the proton donor and proton acceptor, respectively.


Assuntos
Prótons , Espectrometria de Fluorescência , Solventes/química , Acetonitrilas
2.
J Phys Chem A ; 118(13): 2470-9, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24601591

RESUMO

Femtosecond UV-vis pump-probe spectroscopy was employed to study the acid effect on curcumin in the excited state. Curcumin in solutions of weak acids was found to be a photobase forming a protonated curcumin within a few tens of picoseconds from the time of excitation. The excited-state protonation reaction is also observed in the steady-state emission spectrum as a new red emission band with a maximum at 620 nm in the presence of weak acids. The transient pump-probe spectrum consists of four spectral bands, two emission bands, and two absorption bands. We assign a transient absorption band at ∼600 nm and an emission band at ∼540 nm to the neutral ROH form of curcumin. An absorption band at ∼500 nm and an emission band at 620 nm are assigned to the protonated ROH2(+) form of curcumin.


Assuntos
Ácidos/química , Curcumina/química , Estrutura Molecular , Prótons , Espectrofotometria Ultravioleta , Fatores de Tempo
3.
J Phys Chem A ; 118(5): 872-84, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24405147

RESUMO

Steady-state and time-resolved emission techniques were employed to study the acid-base effects on the UV-vis spectrum of curcumin in several organic solvents. The fluorescence-decay rate of curcumin increases with increasing acid concentration in all of the solvents studied. In methanol and ethanol solutions containing about 1 M HCl, the short-wavelength fluorescence (λ < 560 nm) decreases by more than an order of magnitude. (The peak fluorescence intensity of curcumin in these solvents is at 540 nm.) At longer wavelengths (λ ≥ 560 nm) the fluorescence quenching is smaller by a factor of ∼3. A new fluorescence band with a peak at about 620 nm appears at an acid concentration of about 0.2 M in both methanol and ethanol. The 620 nm/530 nm band intensity ratio increases with an increase in the acid concentration. In trifluoroethanol and also in acetic acid in the presence of formic acid, the steady-state emission of curcumin shows an emission band at 620 nm. We attribute this new emission band in hydrogen-bond-donating solvents to a protonated curcumin ROH2(+) form. At high acid concentrations in acetic acid and in trifluoroethanol, the ground state of curcumin is also transformed to ROH2(+) which absorbs at longer wavelengths with a band peak at ∼530 nm compared to 420 nm in neutral-pH samples or 480 nm in basic solutions. In hydrogen-bond-accepting solvents such as dimethyl sulfoxide and also in methanol and ethanol, curcumin does not accept a proton to form the ground-state ROH2(+)

4.
Phys Chem Chem Phys ; 15(24): 9914-23, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23674176

RESUMO

The results of the steady-state and time-resolved fluorescence-spectroscopy measurements and DFT calculations for trans-[4-(4'-dimethylaminostyryl)] pyridine N-oxide (trans-DPO) in various solvents are presented. These results are similar to those reported in the literature for trans-4-(dimethylamino)-4'-cyanostilbene (DCS) where the S1 emissive state shows the charge-transfer (CT) nature. Alcohol solvents, however, have aroused our particular interest because hydrogen-bonded complexes are formed between them and the trans-DPO molecule. They demonstrate a stronger CT character of the lower lying excited state and a larger separation between the first and the second absorption band than in the free trans-DPO molecule. The different effects found in time-dependent femtosecond up-conversion (performed for several emission wavelengths in dioxane and methanol solution over the time range 0-40 ps) were assigned to the hydrogen bond assisted charge transfer process in trans-DPO in methanol, to the excited-state solvation dynamics and mainly to solvent relaxation of trans-DPO dissolved in dioxane and methanol.


Assuntos
Piridinas/química , Estirenos/química , Álcoois/química , Ligação de Hidrogênio , Isomerismo , Modelos Moleculares , Nitrilas/química , Piridinas/síntese química , Teoria Quântica , Soluções/química , Espectrometria de Fluorescência , Estilbenos/química , Fatores de Tempo
5.
J Phys Chem A ; 116(49): 12056-64, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-23176313

RESUMO

Both auramine-O (AuO) and thioflavin-T (ThT) behave as fluorescent molecular rotors, meaning that their (non)radiative properties are markedly affected by the intramolecular rotation of the molecule. In this article, steady-state and time-resolved fluorescence of AuO and ThT were measured in three alcohols, 1-propanol, 1-butanol, and 1-pentanol, over a wide range of temperatures (86-260 K). These solvents are glass-forming liquids, and their viscosity and dielectric relaxation time increase by more than 10 orders of magnitude as the temperature is lowered from room temperature to ~100 K. Accordingly, the fluorescence nonradiative rates constants of AuO and ThT in these solvents decrease by about 3 orders of magnitude at the latter temperature range. We found very good correspondence between the temperature dependence of the nonradiative rate constant, k(nr), of both molecules and the dielectric relaxation rate of the solvents. The k(nr) values of AuO are twice those of ThT along the whole temperature range. The temperature dependence of k(nr) is consistent with the nonradiative model suggested by Glasbeek and co-workers.


Assuntos
Benzofenoneídio/química , Pentanóis/química , Temperatura , Tiazóis/química , Benzotiazóis , Vidro/química , Estrutura Molecular , Solventes/química , Viscosidade
6.
J Phys Chem A ; 116(44): 10770-9, 2012 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-23057588

RESUMO

Steady-state and time-resolved emission techniques were used to study the protolytic processes in the excited state of dehydroluciferin, a nonbioluminescent product of the firefly enzyme luciferase. We found that the ESPT rate coefficient is only 1.1 × 10(10) s(-1), whereas those of d-luciferin and oxyluciferin are 3.7 × 10(10) and 2.1 × 10(10) s(-1), respectively. We measured the ESPT rate in water-methanol mixtures, and we found that the rate decreases nonlinearly as the methanol content in the mixture increases. The deprotonated form of dehydroluciferin has a bimodal decay with short- and long-time decay components, as was previously found for both D-luciferin and oxyluciferin. In weakly acidic aqueous solutions, the deprotonated form's emission is efficiently quenched. We attribute this observation to the ground-state protonation of the thiazole nitrogen, whose pK(a) value is ~3.


Assuntos
Luciferina de Vaga-Lumes/química , Prótons , Teoria Quântica , Animais , Vaga-Lumes , Estrutura Molecular , Espectrometria de Fluorescência
7.
Acc Chem Res ; 45(9): 1548-57, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22738376

RESUMO

Thioflavin-T (ThT) can bind to amyloid fibrils and is frequently used as a fluorescent marker for in vitro biomedical assays of the potency of inhibitors for amyloid-related diseases, such as Alzheimer's disease, Parkinson's disease, and amyloidosis. Upon binding to amyloid fibrils, the steady-state (time-integrated) emission intensity of ThT increases by orders of magnitude. The simplicity of this type of measurement has made ThT a common fluorescent marker in biomedical research over the last 50 years. As a result of the remarkable development in ultrafast spectroscopy measurements, researchers have made substantial progress in understanding the photophysical nature of ThT. Both ab initio quantum-mechanical calculations and experimental evidence have shown that the electronically excited-state surface potential of ThT is composed of two regimes: a locally excited (LE) state and a charge-transfer (CT) state. The electronic wave function of the excited state changes from the initial LE state to the CT state as a result of the rotation around a single C-C bond in the middle of the molecule, which connects the benzothiazole moiety to the dimethylanilino ring. This twisted-internal-CT (TICT) is responsible for the molecular rotor behavior of ThT. This Account discusses several factors that can influence the LE-TICT dynamics of the excited state. Solvent, temperature, and hydrostatic pressure play roles in this process. In the context of biomedical assays, the binding to amyloid fibrils inhibits the internal rotation of the molecular segments and as a result, the electron cannot cross into the nonradiative "dark" CT state. The LE state has high oscillator strength that enables radiative excited-state relaxation to the ground state. This process makes the ThT molecule light up in the presence of amyloid fibrils. In the literature, researchers have suggested several models to explain nonradiative processes. We discuss the advantages and disadvantages of the various nonradiative models while focusing on the model that was initially proposed by Glasbeek and co-workers for auramine-O to be the best suited for ThT. We further discuss the computational fitting of the model for the nonradiative process of ThT.


Assuntos
Corantes Fluorescentes/química , Teoria Quântica , Tiazóis/química , Benzotiazóis , Processos Fotoquímicos
8.
J Phys Chem A ; 116(28): 7452-61, 2012 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-22697799

RESUMO

Optical steady-state and time-resolved spectroscopic methods were used to study the photoprotolytic reaction of oxyluciferin, the active bioluminescence chromophore of the firefly's luciferase-catalyzed reaction. We found that like D-luciferin, the substrate of the firefly bioluminescence reaction, oxyluciferin is a photoacid with pK(a)* value of ∼0.5, whereas the excited-state proton transfer (ESPT) rate coefficient is 2.2 × 10(10) s(-1), which is somewhat slower than that of D-luciferin. The kinetic isotope effect (KIE) on the fluorescence decay of oxyluciferin is 2.5 ± 0.1, the same value as that of D-luciferin. Both chromophores undergo fluorescence quenching in solutions with a pH value below 3.


Assuntos
Benzotiazóis/química , Indóis/química , Pirazinas/química , Cinética , Medições Luminescentes , Estrutura Molecular , Processos Fotoquímicos
9.
J Phys Chem A ; 116(27): 7353-63, 2012 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-22672017

RESUMO

Steady-state and time-resolved emission techniques were used to study the photoprotolytic properties of three recently synthesized strong quinone cyanine photoacids (QCy7 and its sulfonated derivatives). The rate coefficient of the excited-state proton transfer (ESPT), k(PT), of the three dyes is roughly 1.5 × 10(12) s(-1), a high value that is comparable to the solvation dynamics rate of large polar organic molecules in H(2)O and D(2)O. It is twice as fast as the proton transfer rate between two adjacent water molecules in liquid water. We found that, as expected, two of the sulfonated photoacids geminately recombines with the proton at an elevated rate. The accelerated geminate recombination process of the sulfonated derivatives is different from a simple diffusion process of protons. The ESPT rate coefficient of these molecules is the highest recorded thus far.

10.
Phys Chem Chem Phys ; 14(22): 8147-59, 2012 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-22555191

RESUMO

The crystal structure of 2-butylamino-4-nitro-5-methyl pyridine N-oxide (2B5M) and solution studies of both 2B5M and 2-methylamino-4-nitro-5-methyl pyridine (2M5M) N-oxide are presented. Steady-state absorption and emission measurements were employed for both molecules while a picosecond fluorescence up-conversion technique was used to follow the dynamic behavior of the 2M5M system. The experimental methods were complemented by DFT and TD DFT B3LYP/6-31G(d,p) calculations involving ground and excited-state optimization which in the case of the smaller 2M5M molecule were extended to the CAM-B3LYP/6-31G(d,p) method. The solvent effect is incorporated by applying the polarizable continuum (PCM) model. The data reveal that the 2B5M molecule crystallizes in the monoclinic space group P2(1)/c and its crystal lattice is composed of monomers with intramolecular N-H···O [2.572(3) Å] hydrogen bonds, connected into a polymer network by weak intermolecular C-H…O [3.2-3.4 Å]-type interactions. Quantum-chemical calculations show that the aminoalkyl substitutent in aminoalkyl-pyridine N-oxides is a specific determinant of the CT nature of the lowest-lying excited electronic ππ* state, distinguishing them from other nitroaromatic compounds. The results of both picosecond fluorescence up-conversion experiments in different solvents and quantum-chemical calculations suggest that in nonpolar media the ESIPT process in 2M5M is favored, while in polar acetonitrile, the N* → PT* transition demands barrier-crossing and thus unfavorable thermodynamic conditions do not allow the ESIPT to occur. The signals of picosecond fluorescence up-conversion of 2M5M are solvent- and emission-wavelength dependent. The three time components found in a weakly polar isooctane-dioxane mixture have been attributed to solvation dynamics (∼500 fs), and to relaxation of N* and PT* forms while in acetonitrile, a very rapid fluorescence decay with a time constant (2.3-4.0 ps) indicative of the presence of the normal (N*) form was observed. Much shorter fluorescence lifetimes in alcohols (a few picoseconds) and in D(2)O (less than 200 fs) than in aprotic solvents suggest that in protic media, the solvent molecules participate in the ESIPT, bridging between the methylamine group and the N-oxide group of 2M5M.


Assuntos
Prótons , Piridinas/química , Solventes/química , Transporte de Elétrons , Modelos Moleculares , Conformação Molecular , Teoria Quântica , Espectrometria de Fluorescência
11.
J Phys Chem A ; 116(9): 2039-48, 2012 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-22316057

RESUMO

Steady-state and time-resolved emission techniques were employed to study the effect of acetate, a mild base, on the luminescence of curcumin in methanol and ethanol. We found that the steady-state emission intensity as well as the average fluorescence decay time are reduced by a factor of 5 when the acetate concentration is raised to about 1.8 M. We attribute this large effect to an excited-state proton transfer (ESPT) from the acidic groups of curcumin to the acetate anion. We analyze the experimental data in terms of an ESPT reaction occurring between a photoacid and a base.


Assuntos
Curcumina/química , Etanol/química , Metanol/química , Fluorescência , Concentração de Íons de Hidrogênio , Estrutura Molecular , Acetato de Potássio/química
12.
Phys Chem Chem Phys ; 14(25): 8964-73, 2012 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-22311071

RESUMO

The excited-state proton transfer (ESPT) reaction of the "super"photoacid N-methyl-6-hydroxyquinolinium (MHQ) was studied using both fluorescence upconversion and time-correlated single photon counting (TCSPC) techniques. The ultrafast ESPT kinetics were investigated in various alcohols and water and determined to be solvent-controlled. The ESPT temperature dependence of MHQ was also studied in various alcohols and compared to that observed for another "super"photoacid, 5,8-dicyano-2-naphthol (DCN2). A full set of kinetic and thermodynamic parameters describing the ESPT was obtained. The protolytic photodissociation rate constant for MHQ was higher than that for DCN2, while the ESPT activation energies of MHQ were smaller. These findings are attributed to the approximately 3 orders of magnitude differences in excited-state acidities of MHQ and DCN2.

13.
J Phys Chem A ; 116(1): 85-92, 2012 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-22107595

RESUMO

Steady-state and time-resolved emission spectroscopy techniques were employed to study the excited-state proton transfer (ESPT) to water and D(2)O from QCy7, a recently synthesized near-infrared (NIR)-emissive dye with a fluorescence band maximum at 700 nm. We found that the ESPT rate constant, k(PT), of QCy7 excited from its protonated form, ROH, is ~1.5 × 10(12) s(-1). This is the highest ever reported value in the literature thus far, and it is comparable to the reciprocal of the longest solvation dynamics time component in water, τ(S) = 0.8 ps. We found a kinetic isotope effect (KIE) on the ESPT rate of ~1.7. This value is lower than that of weaker photoacids, which usually have KIE value of ~3, but comparable to the KIE on proton diffusion in water of ~1.45, for which the average time of proton transfer between adjacent water molecules is similar to that of QCy7.

14.
J Phys Chem A ; 115(40): 10962-71, 2011 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-21894969

RESUMO

Steady-state and time-resolved techniques were employed to study the nonradiative process of curcumin dissolved in ethanol and 1-propanol in a wide range of temperatures. We found that the nonradiative rate constants at temperatures between 175-250 K qualitatively follow the same trend as the dielectric relaxation times of both neat solvents. We attribute the nonradiative process to solvent-controlled proton transfer. We also found a kinetic isotope effect on the nonradiative process rate constant of ~2. We propose a model in which the excited-state proton transfer breaks the planar hexagonal structure of the keto-enol center of the molecule. This, in turn, enhances the nonradiative process driven by the twist angle between the two phenol moieties.


Assuntos
Curcumina/química , Fluorescência , Temperatura , Estrutura Molecular
15.
J Phys Chem B ; 115(41): 11776-85, 2011 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-21902228

RESUMO

To further explore excited state proton transfer (ESPT) pathways within green fluorescent protein (GFP), mutagenesis, X-ray crystallography, and time-resolved and steady-state optical spectroscopy were employed to create and study the GFP mutant S205A. In wild type GFP (wt-GFP), the proton transfer pathway includes the hydroxyl group of the chromophore, a water molecule, Ser205, and Glu222. We found that the ESPT rate constant of S205A is smaller by a factor of 20 than that of wt-GFP and larger by a factor of 2 in comparison to the ESPT rate of S205V mutant which we previously characterized. (1) High resolution crystal structures reveal that in both S205A and S205V mutants, an alternative proton transfer pathway is formed that involves the chromophore hydroxyl, a bridging water molecule, Thr203 and Glu222. The slow PT rate is explained by the long (∼3.2 Šand presumably weak) hydrogen bond between Thr203 and the water molecule, compared to the 2.7 Šnormal hydrogen bond between the water molecule and Ser205 in wt-GFP. For data analysis of the experimental data from both GFP mutants, we used a two-rotamer kinetic model, assuming only one rotamer is capable of ESPT. Data analysis supports an agreement with the underlying assumption of this model.


Assuntos
Proteínas de Fluorescência Verde/química , Prótons , Substituição de Aminoácidos , Cristalografia por Raios X , Medição da Troca de Deutério , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Cinética , Mutação , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura
16.
Phys Chem Chem Phys ; 13(25): 12058-66, 2011 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-21625693

RESUMO

Time-resolved fluorescence decay of flavin adenine dinucleotide (FAD) was studied at room temperature in water and water-methanol mixtures by a fluorescence upconversion technique. The observations were focused on the most initial decay phase (200 ps), before the residual fluorescence assumes a single exponential decay, typical for an extended conformation of the fluorophore. Within the first few picoseconds, where most of the electron transfer coupled quenching takes place, the emission decay curves could be fitted by a stretched exponent, compatible with the inhomogeneous distance dependent electron transfer model. This implies that the population of the excited FAD molecules exhibits a large number of non-identical states, each with its own separation between the donor (adenine) and acceptor (isoalloxazine) moieties, having its own rate of electron transfer. To evaluate the distribution of the separation between the donor-acceptor pair, we carried out molecular dynamics simulations of closed conformation of the FAD in water and water-methanol mixtures, sampling the structure at 10 fs intervals. The analysis of the dynamics reveals that within the 4 ps time frame, where most of the nonexponential fluorescence relaxation takes place, the relative motion of the donor-acceptor pair is consistent with a one-dimensional Brownian motion, where the diffusion coefficient and the shape of the confining potential well are solvent dependent. The presence of methanol enhances the diffusion constant and widens the width of the potential well. On the basis of these parameters, the relaxation dynamics was accurately reconstructed as an electron transfer reaction in an inhomogeneous system where the reactants are diffusing within the time frame of the observation.


Assuntos
Flavina-Adenina Dinucleotídeo/química , Metanol/química , Água/química , Transporte de Elétrons , Flavinas/química , Cinética , Simulação de Dinâmica Molecular , Fatores de Tempo
17.
J Phys Chem A ; 115(26): 7591-601, 2011 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-21630647

RESUMO

We studied the direct proton transfer (PT) from electronically excited D-luciferin to several mild bases. The fluorescence up-conversion technique is used to measure the rise and decay of the fluorescence signals of the protonated and deprotonated species of D-luciferin. From a base concentration of 0.25 M or higher the proton transfer rates to the fluoride, dihdyrogen phosphate or acetate bases are fast and comparable. The fluorescence signals are nonexponential and complex. We suggest that the fastest decay component arises from a direct proton transfer process from the hydroxyl group of D-luciferin to the mild base. The proton donor and acceptor molecules form an ion pair prior to photoexcitation. Upon photoexcitation solvent rearrangement occurs on a 1 ps time-scale. The PT reaction time constant is ∼2 ps for all three bases. A second decay component of about 10 ps is attributed to the proton transfer in a contact pair bridged by one water molecule. The longest decay component is due to both the excited-state proton transfer (ESPT) to the solvent and the diffusion-assisted PT process between a photoacid and a base pair positioned remotely from each other prior to photoexcitation.


Assuntos
Álcalis/química , Luciferina de Vaga-Lumes/química , Fluoretos/química , Animais , Besouros , Fluorescência , Prótons
18.
J Phys Chem A ; 115(30): 8479-87, 2011 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-21711024

RESUMO

A computational model of nonradiative decay is developed and applied to explain the time-dependent emission spectrum of thioflavin T (ThT). The computational model is based on a previous model developed by Glasbeek and co-workers (van der Meer, M. J.; Zhang, H.; Glasbeek, M. J. Chem. Phys. 2000, 112, 2878) for auramine O, a molecule that, like ThT, exhibits a high nonradiative rate. The nonradiative rates of both auramine O and ThT are inversely proportional to the solvent viscosity. The Glasbeek model assumes that the excited state consists of an adiabatic potential surface constructed by adiabatic coupling of emissive and dark states. For ThT, the twist angle between the benzothiazole and the aniline is responsible for the extensive mixing of the two excited states. At a twist angle of 90°, the S(1) state assumes a charge-transfer-state character with very small oscillator strength, which causes the emission intensity to be very small as well. In the ground state, the twist angle of ThT is rather small. The photoexcitation leads first to a strongly emissive state (small twist angle). As time progresses, the twist angle increases and the oscillator strength decreases. The fit of the experimental results by the model calculations is good for times longer than 3 ps. When a two-coordinate model is invoked or a solvation spectral-shift component is added, the fit to the experimental results is good at all times.


Assuntos
Elétrons , Teoria Quântica , Tiazóis/química , Benzotiazóis , Estrutura Molecular
19.
J Phys Chem A ; 115(24): 6481-7, 2011 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-21585210

RESUMO

Time-resolved emission techniques were employed to study the nonradiative process of thioflavin-T (ThT) in 1-propanol, 1-butanol, and 1-pentanol as a function of the hydrostatic pressure. Elevated hydrostatic pressure increases the alcohol viscosity, which in turn strongly influences the nonradiative rate of ThT. A diamond-anvil cell was used to increase the pressure up to 2.4 GPa. We found that the nonradiative rate constant, k(nr), decreases with pressure. We further found a remarkable linear correlation between a decrease in k(nr) (increase in the nonradiative lifetime, τ(nr)) and an increase in the solvent viscosity. The viscosity was varied by a factor of 1000 and k(nr) was measured at high pressures, at which the nonradiative rate constant of the molecules decreased from (7 ps)(-1) to (13 ns)(-1), (13 ps)(-1) to (17 ns)(-1) and (17 ps)(-1) to (15 ns)(-1) for 1-propanol, 1-butanol, and 1-pentanol, respectively. The viscosity-dependence of k(nr) is explained by the excited-state rotation rate of the two-ring systems, with respect to each other.


Assuntos
Tiazóis/química , 1-Butanol/química , 1-Propanol/química , Benzotiazóis , Fluorescência , Estrutura Molecular , Pentanóis/química , Pressão , Fatores de Tempo , Viscosidade
20.
J Phys Chem A ; 115(12): 2540-8, 2011 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-21381730

RESUMO

Steady-state and time-resolved emission techniques were employed to study the nonradiative process of Thioflavin-T (ThT) in 1-propanol as a function of temperature. We found that the nonradiative rate, k(nr), decreased by about 3 orders of magnitude when the temperature was lowered to 88 K. We found remarkably good correspondence between the temperature dependence of k(nr) of ThT and the dielectric relaxation times of the 1-propanol solvent.


Assuntos
1-Propanol/química , Vidro/química , Temperatura , Tiazóis/química , Benzotiazóis , Impedância Elétrica , Espectrometria de Fluorescência , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...