Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 20(6): 2404-2422, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38466924

RESUMO

σ-Functionals belong to the class of Kohn-Sham (KS) correlation functionals based on the adiabatic-connection fluctuation-dissipation theorem and are technically closely related to the random phase approximation (RPA). They have the same computational demand as the latter, with the computational effort of an energy evaluation for both methods being lower than that of a preceding hybrid DFT calculation for typical systems but yield much higher accuracy, reaching chemical accuracy of 1 kcal/mol for quantities such as reactions and transition energies in main group chemistry. In previous work on σ-functionals, rather large Gaussian basis sets have been used. Here, we investigate the actual basis set requirements of σ-functionals and present three setups that employ smaller Gaussian basis sets ranging from quadruple-ζ (QZ) to triple-ζ (TZ) quality and represent a good compromise between accuracy and computational efficiency. Furthermore, we introduce an implementation of σ-functionals based on Slater-type basis sets and present two setups of QZ and TZ quality for this implementation. We test the accuracy of these setups on a large database of various physical properties and types of reactions, as well as equilibrium geometries and vibrational frequencies. As expected, the accuracy of σ-functional calculations becomes somewhat lower with a decreasing basis set size. However, for all setups considered here, calculations with σ-functionals are clearly more accurate than those within the RPA and even more so than those of the conventional KS methods. For the smallest setup using Gaussian-type basis functions and Slater-type basis functions, we introduce a reparametrization that reduces the loss in accuracy due to the basis set error to some extent. A comparison with the range-separated hybrid ωB97X-V and the double hybrid DSD-BLYP-D3 shows that σ functionals outperform in accuracy both of these accurate and, for their class, representative functionals.

2.
J Chem Phys ; 157(11): 114105, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36137780

RESUMO

The recently introduced σ-functionals constitute a new type of functionals for the Kohn-Sham (KS) correlation energy. σ-Functionals are based on the adiabatic-connection fluctuation-dissipation theorem, are computationally closely related to the well-known direct random phase approximation (dRPA), and are formally rooted in many-body perturbation theory along the adiabatic connection. In σ-functionals, the function of the eigenvalues σ of the Kohn-Sham response matrix that enters the coupling constant and frequency integration in the dRPA is replaced by another function optimized with the help of reference sets of atomization, reaction, transition state, and non-covalent interaction energies. σ-Functionals are highly accurate and yield chemical accuracy of 1 kcal/mol in reaction or transition state energies, in main group chemistry. A shortcoming of σ-functionals is their inability to accurately describe processes involving a change of the electron number, such as ionizations or electron attachments. This problem is attributed to unphysical self-interactions caused by the neglect of the exchange kernel in the dRPA and σ-functionals. Here, we tackle this problem by introducing a frequency- and σ-dependent scaling of the eigenvalues σ of the KS response function that models the effect of the exchange kernel. The scaling factors are determined with the help of the homogeneous electron gas. The resulting scaled σ-functionals retain the accuracy of their unscaled parent functionals but in addition yield very accurate ionization potentials and electron affinities. Moreover, atomization and total energies are found to be exceptionally accurate. Scaled σ-functionals are computationally highly efficient like their unscaled counterparts.

3.
J Chem Phys ; 156(20): 204124, 2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35649824

RESUMO

We present a Kohn-Sham (KS) inversion approach to construct KS exchange-correlation potentials corresponding to given electron densities. This method is based on an iterative procedure using linear response to update potentials. All involved quantities, i.e., orbitals, potentials, and response functions, are represented by Gaussian basis functions. In contrast to previous KS inversion methods relying on Gaussian basis sets, the method presented here is numerically stable even for standard basis sets from basis set libraries due to a preprocessing of the auxiliary basis used to represent an exchange-correlation charge density that generates the exchange-correlation potential. The new KS inversion method is applied to reference densities of various atoms and molecules obtained by full configuration interaction or CCSD(T) (coupled cluster singles doubles perturbative triples). The considered examples encompass cases known to be difficult, such as stretched hydrogen or lithium hydride molecules or the beryllium isoelectronic series. For the stretched hydrogen molecule, potentials of benchmark quality are obtained by employing large basis sets. For the carbon monoxide molecule, we show that the correlation potential from the random phase approximation (RPA) is in excellent qualitative and quantitative agreement with the correlation potential from the KS inversion of a CCSD(T) reference density. This indicates that RPA correlation potentials, in contrast to those from semi-local density-functionals, resemble the exact correlation potential. Besides providing exchange-correlation potentials for benchmark purposes, the proposed KS inversion method may be used in density-partition-based quantum embedding and in subsystem density-functional methods because it combines numerical stability with computational efficiency.

5.
Faraday Discuss ; 224(0): 79-97, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-32935700

RESUMO

Compliance with the Lieb-Oxford bound for the indirect Coulomb energy and for the exchange-correlation energy is investigated for a number of density-functional methods based on the adiabatic-connection fluctuation-dissipation (ACFD) theorem to treat correlation. Furthermore, the correlation contribution to the pair density resulting from these methods is compared with highly accurate reference values for the helium atom and for the hydrogen molecule at several bond distances. For molecules, the Lieb-Oxford bound is obeyed by all considered methods. For the homogeneous electron gas, it is violated by all methods for low electron densities. The simplest considered ACFD method, the direct random phase approximation (dRPA), violates the Lieb-Oxford bound much earlier than more advanced ACFD methods that, in addition to the simple Hartree kernel, take into account the exchange kernel and an approximate correlation kernel in the calculation of the correlation energy. While the dRPA yields quite poor correlation contributions to the pair density, those from more advanced ACFD methods are physically reasonable but still leave room for improvements, particularly in the case of the stretched hydrogen molecule.

6.
Chemistry ; 23(70): 17701-17706, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-28940703

RESUMO

Liquid binary Pd-Ga alloys with low Pd contents of 0.8, 1.8, and 4.7 at % of Pd were examined as a function of sample temperature in ultra-high vacuum by using angle-resolved XPS. Upon cooling from 750 to 400 K, a pronounced temperature-dependence of the Pd concentration in the liquid phase was observed, which was explained by the transition from the pure liquid phase to a two-phase system, consisting of a solid Ga5 Pd phase and a Pd-depleted liquid Pd-Ga alloy. In the liquid Pd-Ga alloy, Pd is always depleted from the topmost interface layer, as deduced from angle-resolved XPS at 0 and 80° emission, independent of temperature and Pd concentration. This observation is interpreted as an inhomogeneous depth distribution function of Pd, that is, the segregation of Ga to the surface of the liquid phase. The results of a DFT-based molecular dynamics simulation (MD) independently show interfacial stratification of Ga and an inhomogeneous Pd distribution along the surface normal. The evaluation of the experimental data with a rigid layer model based on the MD calculations leads to excellent agreement with the simulation.

7.
Phys Rev Lett ; 117(14): 143002, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27740821

RESUMO

A power series approximation for the correlation kernel of time-dependent density-functional theory is presented. Using this approximation in the adiabatic-connection fluctuation-dissipation (ACFD) theorem leads to a new family of Kohn-Sham methods. The new methods yield reaction energies and barriers of unprecedented accuracy and enable a treatment of static (strong) correlation with an accuracy of high-level multireference configuration interaction methods but are single-reference methods allowing for a black-box-like handling of static correlation. The new methods exhibit a better scaling of the computational effort with the system size than rivaling wave-function-based electronic structure methods. Moreover, the new methods do not suffer from the problem of singularities in response functions plaguing previous ACFD methods and therefore are applicable to any type of electronic system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...