Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 24(28): 7200-7209, 2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29572993

RESUMO

A new class of hierarchically structured mesoporous silica core-shell nanoparticles (HSMSCSNs) with a periodic mesoporous organosilica (PMO) core and a mesoporous silica (MS) shell is reported. The applied one-pot, two-step strategy allows rational control over the core/shell chemical composition, topology, and pore/particle size, simply by adjusting the reaction conditions in the presence of cetyltrimethylammonium bromide (CTAB) as structure-directing agent under basic conditions. The spherical, ethylene- or methylene-bridged PMO cores feature hexagonal (p6mm) or cage-like cubic symmetry (Pm3‾ n) depending on the organosilica precursor. The hexagonal MS shell was obtained by n-hexane-induced controlled hydrolysis of TEOS followed by directional co-assembly/condensation of silicate/CTAB composites at the PMO cores. The HSMSCSNs feature a hierarchical pore structure with pore diameters of about 2.7 and 5.6 nm in the core and shell domains, respectively. The core sizes and shell thicknesses are adjustable in the ranges of 90-275 and 15-50 nm, respectively, and the surface areas (max. 1300 m2 g-1 ) and pore volumes (max. 1.83 cm3 g-1 ) are among the highest reported for core-shell nanoparticles. The adsorption and controlled release of the fungicide propiconazole by the HSMSCSNs showed a three-stage release profile.


Assuntos
Compostos de Cetrimônio/química , Fungicidas Industriais/química , Nanopartículas/química , Compostos de Organossilício/química , Dióxido de Silício/química , Adsorção , Cetrimônio , Hidrólise , Tamanho da Partícula
2.
Nanomaterials (Basel) ; 8(1)2018 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-29300343

RESUMO

Crystalline ZnO-ROH and ZnO-OR (R = Me, Et, iPr, nBu) nanoparticles (NPs) have been successfully synthesized by the thermal decomposition of in-situ-formed organozinc complexes Zn(OR)2 deriving from the reaction of Zn[N(SiMe3)2]2 with ROH and of the freshly prepared Zn(OR)2 under an identical condition, respectively. With increasing carbon chain length of alkyl alcohol, the thermal decomposition temperature and dispersibility of in-situ-formed intermediate zinc alkoxides in oleylamine markedly influenced the particle sizes of ZnO-ROH and its shape (sphere, plate-like aggregations), while a strong diffraction peak-broadening effect is observed with decreasing particle size. For ZnO-OR NPs, different particle sizes and various morphologies (hollow sphere or cuboid-like rod, solid sphere) are also observed. As a comparison, the calcination of the fresh-prepared Zn(OR)2 generated ZnO-R NPs possessing the particle sizes of 5.4~34.1 nm. All crystalline ZnO nanoparticles are characterized using X-ray diffraction analysis, electron microscopy and solid-state ¹H and 13C nuclear magnetic resonance (NMR) spectroscopy. The size effect caused by confinement of electrons' movement and the defect centres caused by unpaired electrons on oxygen vacancies or ionized impurity heteroatoms in the crystal lattices are monitored by UV-visible spectroscopy, electron paramagnetic resonance (EPR) and photoluminescent (PL) spectroscopy, respectively. Based on the types of defects determined by EPR signals and correspondingly defect-induced probably appeared PL peak position compared to actual obtained PL spectra, we find that it is difficult to establish a direct relationship between defect types and PL peak position, revealing the complication of the formation of defect types and photoluminescence properties.

3.
ISME J ; 6(3): 524-30, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21938023

RESUMO

Cells maintain an osmotic pressure essential for growth and division, using organic compatible solutes and inorganic ions. Mg(2+), which is the most abundant divalent cation in living cells, has not been considered an osmotically important solute. Here we show that under carbon limitation or dormancy native marine bacterial communities have a high cellular concentration of Mg(2+) (370-940 mM) and a low cellular concentration of Na(+) (50-170 mM). With input of organic carbon, the average cellular concentration of Mg(2+) decreased 6-12-fold, whereas that of Na(+) increased ca 3-4-fold. The concentration of chlorine, which was in the range of 330-1200 mM, and was the only inorganic counterion of quantitative significance, balanced and followed changes in the concentration of Mg(2+)+Na(+). In an osmotically stable environment, like seawater, any major shift in bacterial osmolyte composition should be related to shifts in growth conditions, and replacing organic compatible solutes with inorganic solutes is presumably a favorable strategy when growing in carbon-limited condition. A high concentration of Mg(2+) in cells may also serve to protect and stabilize macromolecules during periods of non-growth and dormancy. Our results suggest that Mg(2+) has a major role as osmolyte in marine bacteria, and that the [Mg(2+)]/[Na(+)] ratio is related to its physiological condition and nutritional status. Bacterial degradation is a main sink for dissolved organic carbon in the ocean, and understanding the mechanisms limiting bacterial activity is therefore essential for understanding the oceanic C-cycle. The [Mg(2+)]/[Na(+)]-ratio in cells may provide a physiological proxy for the transitions between C-limited and mineral nutrient-limited bacterial growth in the ocean's surface layer.


Assuntos
Bactérias/metabolismo , Carbono/metabolismo , Magnésio/metabolismo , Água do Mar/microbiologia , Bactérias/crescimento & desenvolvimento , Ciclo do Carbono , Clorofila/análise , Clorofila A , Oceanos e Mares , Estações do Ano , Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA