Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appetite ; 199: 107389, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38697221

RESUMO

The complications of obesity extend beyond the periphery to the central nervous system (CNS) and include an increased risk of developing neuropsychiatric co-morbidities like depressive illness. Preclinical studies support this concept, including studies that have examined the effects of a high-fat diet (HFD) on depressive-like behaviors. Although women are approximately two-fold more likely to develop depressive illness compared to men, most preclinical studies have focused on the effects of HFD in male rodents. Accordingly, the goal of this study was to examine depressive-like behaviors in male and female rats provided access to a HFD. In agreement with prior studies, male and female rats provided a HFD segregate into an obesity phenotype (i.e., diet-induced obesity; DIO) or a diet resistant (DR) phenotype. Upon confirmation of the DR and DIO phenotypes, behavioral assays were performed in control chow, DR, and DIO rats. In the sucrose preference test, male DIO rats exhibited significant decreases in sucrose consumption (i.e., anhedonia) compared to male DR and male control rats. In the forced swim test (FST), male DIO rats exhibited increases in immobility and decreases in climbing behaviors in the pre-test sessions. Interestingly, male DR rats exhibited these same changes in both the pre-test and test sessions of the FST, suggesting that consumption of a HFD, even in the absence of the development of an obesity phenotype, has behavioral consequences. Female rats did not exhibit differences in sucrose preference, but female DIO rats exhibited increases in immobility exclusively in the test session of the FST, behavioral changes that were not affected by the stage of the estrous cycle. Collectively, these studies demonstrate that access to a HFD elicits different behavioral outcomes in male and female rats.

2.
Neurobiol Stress ; 18: 100446, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35573808

RESUMO

Gulf War Illness (GWI) is a multi-symptom illness that continues to affect over 250,000 American Gulf War veterans. The causes of GWI remain equivocal; however, prophylactic use of the acetylcholinesterase inhibitor pyridostigmine bromide (PB), and the stress of combat have been identified as two potential causative factors. Both PB and stress alter acetylcholine (ACh), which mediates both cognition and anti-inflammatory responses. As inflammation has been proposed to contribute to the cognitive deficits and immune dysregulation in GWI, the goal of this study was to determine the long-term effects of PB and stress on the cholinergic anti-inflammatory pathway in the central nervous system and periphery. We used our previously established rat model of GWI and in vivo microdialysis to assess cholinergic neurochemistry in the prefrontal cortex (PFC) and hippocampus following a mild immune challenge (lipopolysaccharide; LPS). We then examined LPS-induced changes in inflammatory markers in PFC and hippocampal homogenates. We found that PB treatment produces a long-lasting potentiation of the cholinergic response to LPS in both the PFC and hippocampus. Interestingly, this prolonged effect of PB treatment enhancing cholinergic responses to LPS was accompanied by paradoxical increases in the release of pro-inflammatory cytokines in these brain regions. Collectively, these findings provide evidence that neuroinflammation resulting from dysregulation of the cholinergic anti-inflammatory pathway is a mechanistic mediator in the progression of the neurochemical and neurocognitive deficits in GWI and more broadly suggest that dysregulation of this pathway may contribute to neuroinflammatory processes in stress-related neurological disorders.

3.
Neurobiol Stress ; 15: 100354, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34258333

RESUMO

Insulin resistance is a major contributor to the neuroplasticity deficits observed in patients with metabolic disorders. However, the relative contribution of peripheral versus central insulin resistance in the development of neuroplasticity deficits remains equivocal. To distinguish between peripheral and central insulin resistance, we developed a lentiviral vector containing an antisense sequence selective for the insulin receptor (LV-IRAS). We previously demonstrated that intra-hippocampal injection of this vector impairs synaptic transmission and hippocampal-dependent learning and memory in the absence of peripheral insulin resistance. In view of the increased risk for the development of neuropsychiatric disorders in patients with insulin resistance, the current study examined depressive and anxiety-like behaviors, as well as hippocampal structural plasticity in rats with hippocampal-specific insulin resistance. Following hippocampal administration of either the LV-control virus or the LV-IRAS, anhedonia was evaluated by the sucrose preference test, despair behavior was assessed in the forced swim test, and anxiety-like behaviors were determined in the elevated plus maze. Hippocampal neuron morphology was studied by Golgi-Cox staining. Rats with hippocampal insulin resistance exhibited anxiety-like behaviors and behavioral despair without differences in anhedonia, suggesting that some but not all components of depressive-like behaviors were affected. Morphologically, hippocampal-specific insulin resistance elicited atrophy of the basal dendrites of CA3 pyramidal neurons and dentate gyrus granule neurons, and also reduced the expression of immature dentate gyrus granule neurons. In conclusion, hippocampal-specific insulin resistance elicits structural deficits that are accompanied by behavioral despair and anxiety-like behaviors, identifying hippocampal insulin resistance as a key factor in depressive illness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...