Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Biol ; 22(1): 49, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413944

RESUMO

BACKGROUND: Resolving the phylogeny of rapidly radiating lineages presents a challenge when building the Tree of Life. An Old World avian family Prunellidae (Accentors) comprises twelve species that rapidly diversified at the Pliocene-Pleistocene boundary. RESULTS: Here we investigate the phylogenetic relationships of all species of Prunellidae using a chromosome-level de novo assembly of Prunella strophiata and 36 high-coverage resequenced genomes. We use homologous alignments of thousands of exonic and intronic loci to build the coalescent and concatenated phylogenies and recover four different species trees. Topology tests show a large degree of gene tree-species tree discordance but only 40-54% of intronic gene trees and 36-75% of exonic genic trees can be explained by incomplete lineage sorting and gene tree estimation errors. Estimated branch lengths for three successive internal branches in the inferred species trees suggest the existence of an empirical anomaly zone. The most common topology recovered for species in this anomaly zone was not similar to any coalescent or concatenated inference phylogenies, suggesting presence of anomalous gene trees. However, this interpretation is complicated by the presence of gene flow because extensive introgression was detected among these species. When exploring tree topology distributions, introgression, and regional variation in recombination rate, we find that many autosomal regions contain signatures of introgression and thus may mislead phylogenetic inference. Conversely, the phylogenetic signal is concentrated to regions with low-recombination rate, such as the Z chromosome, which are also more resistant to interspecific introgression. CONCLUSIONS: Collectively, our results suggest that phylogenomic inference should consider the underlying genomic architecture to maximize the consistency of phylogenomic signal.


Assuntos
Fluxo Gênico , Genômica , Aves Canoras , Filogenia , Genômica/métodos , Genoma
2.
Nat Commun ; 14(1): 8215, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081809

RESUMO

The processes generating the earth's montane biodiversity remain a matter of debate. Two contrasting hypotheses have been advanced to explain how montane populations form: via direct colonization from other mountains, or, alternatively, via upslope range shifts from adjacent lowland areas. We seek to reconcile these apparently conflicting hypotheses by asking whether a species' ancestral geographic origin determines its mode of mountain colonization. Island-dwelling passerine birds at the faunal crossroads between Eurasia and Australo-Papua provide an ideal study system. We recover the phylogenetic relationships of the region's montane species and reconstruct their ancestral geographic ranges, elevational ranges, and migratory behavior. We also perform genomic population studies of three super-dispersive montane species/clades with broad island distributions. Eurasian-origin species populated archipelagos via direct colonization between mountains. This mode of colonization appears related to ancestral adaptations to cold and seasonal climates, specifically short-distance migration. Australo-Papuan-origin mountain populations, by contrast, evolved from lowland ancestors, and highland distribution mostly precludes their further colonization of island mountains. Our study explains much of the distributional variation within a complex biological system, and provides a synthesis of two seemingly discordant hypotheses for montane community formation.


Assuntos
Biodiversidade , Passeriformes , Animais , Filogenia , Clima , Genética Populacional
3.
Mol Phylogenet Evol ; 189: 107909, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37611647

RESUMO

Genetic isolation and morphological differentiation are two important factors in the speciation process that not always act in concert. A rapid morphological change in a lineage can hide its close relationship to another lineage, while slight morphological differentiation between two taxa can give the appearance of a closer relationship than is actually the case. The Dollarbird (Eurystomus orientalis) and the Azure Roller (Eurystomus azureus) is such an example. Today the Dollarbird and the Azure Roller are unanimously considered to constitute two distinct species, but in a recent genetic study it has been shown that the latter taxon, despite being larger and having a distinctly different coloration, is phylogenetically nested within the former. Its precise placement within this complex has not been determined, however. In this study, we investigate the phylogenetic relationships within the Dollarbird/Azure Roller complex. We estimate divergence times and infer phylogenetic relationships using sequence data from 6,475 genome-wide intronic regions, as well as complete mitochondrial genomes, using both concatenation and multispecies coalescence approaches. We find that within the Dollarbird/Azure Roller complex there are several examples of discrepancies between genetic and morphological differentiation. The Dollarbird is currently divided into between nine to twelve subspecies. Some of these subspecies are poorly differentiated, whereas others are morphologically more clearly discernable. Our data suggest that the complex consist of at least seven distinct genetic lineages that do not entirely match the morphological variation within the group. For instance, our results show that the subspecies solomonensis from the Solomon Islands, despite being morphologically very similar to its geographically closest neighbors, in fact is a highly distinct lineage that became isolated more than 700,000 years ago. In contrast, the morphologically distinct Azure Roller, which is currently treated as a distinct species, is nested within the Dollarbird and forms a slightly younger lineage than solomonensis and is the sister group to a clade with Australian and New Guinean Dollarbirds. Our results also show a deep genetic split within the Dollarbirds on the Asian mainland. This stands in contrast to the apparent clinal morphological variation reported for the birds on the Asian mainland. We also find support for the presence of a genetically distinct clade in the Wallacea region. The birds from the Wallacea region has previously been recognized as a distinct subspecies, connectens, but is currently placed in synonymy of other subspecies. Our results are thus at odds with the current division of the Dollarbird/Azure Roller complex into two species. Given that the species status of azureus is undisputed, the apparent genetic isolation of solomonensis and its clear separation from the other lineages suggests that this taxon also warrants species status. Based on the genetic and morphological variation observed within the Dollarbird/Azure Roller complex there is little doubt that even more taxa should regarded as species, but this require further examination.


Assuntos
Genoma Mitocondrial , Passeriformes , Animais , Filogenia , Austrália , Passeriformes/genética , Isolamento Reprodutivo , DNA Mitocondrial/genética
4.
Evol Lett ; 7(1): 24-36, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37065434

RESUMO

Tropical islands are renowned as natural laboratories for evolutionary study. Lineage radiations across tropical archipelagos are ideal systems for investigating how colonization, speciation, and extinction processes shape biodiversity patterns. The expansion of the island thrush across the Indo-Pacific represents one of the largest yet most perplexing island radiations of any songbird species. The island thrush exhibits a complex mosaic of pronounced plumage variation across its range and is arguably the world's most polytypic bird. It is a sedentary species largely restricted to mountain forests, yet it has colonized a vast island region spanning a quarter of the globe. We conducted a comprehensive sampling of island thrush populations and obtained genome-wide SNP data, which we used to reconstruct its phylogeny, population structure, gene flow, and demographic history. The island thrush evolved from migratory Palearctic ancestors and radiated explosively across the Indo-Pacific during the Pleistocene, with numerous instances of gene flow between populations. Its bewildering plumage variation masks a biogeographically intuitive stepping stone colonization path from the Philippines through the Greater Sundas, Wallacea, and New Guinea to Polynesia. The island thrush's success in colonizing Indo-Pacific mountains can be understood in light of its ancestral mobility and adaptation to cool climates; however, shifts in elevational range, degree of plumage variation and apparent dispersal rates in the eastern part of its range raise further intriguing questions about its biology.

5.
Commun Biol ; 5(1): 857, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999361

RESUMO

The New World Vulture [Coragyps] occidentalis (L. Miller, 1909) is one of many species that were extinct by the end of the Pleistocene. To understand its evolutionary history we sequenced the genome of a 14,000 year old [Coragyps] occidentalis found associated with megaherbivores in the Peruvian Andes. occidentalis has been viewed as the ancestor, or possibly sister, to the extant Black Vulture Coragyps atratus, but genomic data shows occidentalis to be deeply nested within the South American clade of atratus. Coragyps atratus inhabits lowlands, but the fossil record indicates that occidentalis mostly occupied high elevations. Our results suggest that occidentalis evolved from a population of atratus in southwestern South America that colonized the High Andes 300 to 400 kya. The morphological and morphometric differences between occidentalis and atratus may thus be explained by ecological diversification following from the natural selection imposed by this new and extreme, high elevation environment. The sudden evolution of a population with significantly larger body size and different anatomical proportions than atratus thus constitutes an example of punctuated evolution.


Assuntos
Aves , Fósseis , Animais , Aves/anatomia & histologia , América do Sul
6.
Nat Commun ; 13(1): 4821, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974023

RESUMO

Global warming is increasingly exacerbating biodiversity loss. Populations locally adapted to spatially heterogeneous environments may respond differentially to climate change, but this intraspecific variation has only recently been considered when modelling vulnerability under climate change. Here, we incorporate intraspecific variation in genomic offset and ecological niche modelling to estimate climate change-driven vulnerability in two bird species in the Sino-Himalayan Mountains. We found that the cold-tolerant populations show higher genomic offset but risk less challenge for niche suitability decline under future climate than the warm-tolerant populations. Based on a genome-niche index estimated by combining genomic offset and niche suitability change, we identified the populations with the least genome-niche interruption as potential donors for evolutionary rescue, i.e., the populations tolerant to climate change. We evaluated potential rescue routes via a landscape genetic analysis. Overall, we demonstrate that the integration of genomic offset, niche suitability modelling, and landscape connectivity can improve climate change-driven vulnerability assessments and facilitate effective conservation management.


Assuntos
Mudança Climática , Ecossistema , Animais , Biodiversidade , Aves/genética , Genômica
7.
Mol Ecol Resour ; 22(7): 2672-2684, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35661418

RESUMO

Biological specimens in natural history collections constitute a massive repository of genetic information. Many specimens have been collected in areas in which they no longer exist or in areas where present-day collecting is not possible. There are also specimens in collections representing populations or species that have gone extinct. Furthermore, species or populations may have been sampled throughout an extensive time period, which is particularly valuable for studies of genetic change through time. With the advent of high-throughput sequencing, natural history museum resources have become accessible for genomic research. Consequently, these unique resources are increasingly being used across many fields of natural history. In this paper, we summarize our experiences of resequencing hundreds of genomes from historical avian museum specimens. We publish the protocols we have used and discuss the entire workflow from sampling and laboratory procedures, to the bioinformatic processing of historical specimen data.


Assuntos
Aves , Museus , Animais , Aves/genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA/métodos
8.
Heredity (Edinb) ; 128(3): 159-168, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35082388

RESUMO

A taxonomic classification that accurately captures evolutionary history is essential for conservation. Genomics provides powerful tools for delimiting species and understanding their evolutionary relationships. This allows for a more accurate and detailed view on conservation status compared with other, traditionally used, methods. However, from a practical and ethical perspective, gathering sufficient samples for endangered taxa may be difficult. Here, we use museum specimens to trace the evolutionary history and species boundaries in an Asian oriole clade. The endangered silver oriole has long been recognized as a distinct species based on its unique coloration, but a recent study suggested that it might be nested within the maroon oriole-species complex. To evaluate species designation, population connectivity, and the corresponding conservation implications, we assembled a de novo genome and used whole-genome resequencing of historical specimens. Our results show that the silver orioles form a monophyletic lineage within the maroon oriole complex and that maroon and silver forms continued to interbreed after initial divergence, but do not show signs of recent gene flow. Using a genome scan, we identified genes that may form the basis for color divergence and act as reproductive barriers. Taken together, our results confirm the species status of the silver oriole and highlight that taxonomic revision of the maroon forms is urgently needed. Our study demonstrates how genomics and Natural History Collections (NHC) can be utilized to shed light on the taxonomy and evolutionary history of natural populations and how such insights can directly benefit conservation practitioners when assessing wild populations.


Assuntos
Evolução Biológica , Passeriformes , Animais , Fluxo Gênico , Genômica , Filogenia
9.
Biol Lett ; 17(7): 20210089, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34314643

RESUMO

Mountain regions contain extraordinary biodiversity. The environmental heterogeneity and glacial cycles often accelerate speciation and adaptation of montane species, but how these processes influence the genomic differentiation of these species is largely unknown. Using a novel chromosome-level genome and population genomic comparisons, we study allopatric divergence and selection in an iconic bird living in a tropical mountain region in New Guinea, Archbold's bowerbird (Amblyornis papuensis). Our results show that the two populations inhabiting the eastern and western Central Range became isolated ca 11 800 years ago, probably because the suitable habitats for this cold-tolerating bird decreased when the climate got warmer. Our genomic scans detect that genes in highly divergent genomic regions are over-represented in developmental processes, which is probably associated with the observed differences in body size between the populations. Overall, our results suggest that environmental differences between the eastern and western Central Range probably drive adaptive divergence between them.


Assuntos
Ecossistema , Passeriformes , Animais , Biodiversidade , Especiação Genética , Genômica , Passeriformes/genética , Filogenia
10.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753478

RESUMO

Species in a shared environment tend to evolve similar adaptations under the influence of their phylogenetic context. Using snowfinches, a monophyletic group of passerine birds (Passeridae), we study the relative roles of ancestral and species-specific adaptations to an extreme high-elevation environment, the Qinghai-Tibet Plateau. Our ancestral trait reconstruction shows that the ancestral snowfinch occupied high elevations and had a larger body mass than most nonsnowfinches in Passeridae. Subsequently, this phenotypic adaptation diversified in the descendant species. By comparing high-quality genomes from representatives of the three phylogenetic lineages, we find that about 95% of genes under positive selection in the descendant species are different from those in the ancestor. Consistently, the biological functions enriched for these species differ from those of their ancestor to various degrees (semantic similarity values ranging from 0.27 to 0.5), suggesting that the three descendant species have evolved divergently from the initial adaptation in their common ancestor. Using a functional assay to a highly selective gene, DTL, we demonstrate that the nonsynonymous substitutions in the ancestor and descendant species have improved the repair capacity of ultraviolet-induced DNA damage. The repair kinetics of the DTL gene shows a twofold to fourfold variation across the ancestor and the descendants. Collectively, this study reveals an exceptional case of adaptive evolution to high-elevation environments, an evolutionary process with an initial adaptation in the common ancestor followed by adaptive diversification of the descendant species.


Assuntos
Aclimatação/genética , Tamanho Corporal/genética , Taxa de Mutação , Seleção Genética , Altitude , Substituição de Aminoácidos , Animais , Reparo do DNA , Proteínas Nucleares/genética , Filogenia , Especificidade da Espécie , Tibet
11.
Evol Appl ; 13(5): 1026-1036, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32431750

RESUMO

Habitat fragmentation is a major extinction driver. Despite dramatically increasing fragmentation across the globe, its specific impacts on population connectivity across species with differing life histories remain difficult to characterize, let alone quantify. Here, we investigate patterns of population connectivity in six songbird species from Singapore, a highly fragmented tropical rainforest island. Using massive panels of genome-wide single nucleotide polymorphisms across dozens of samples per species, we examined population genetic diversity, inbreeding, gene flow and connectivity among species along a spectrum of ecological specificities. We found a higher resilience to habitat fragmentation in edge-tolerant and forest-canopy species as compared to forest-dependent understorey insectivores. The latter exhibited levels of genetic diversity up to three times lower in Singapore than in populations from contiguous forest elsewhere. Using dense genomic and geographic sampling, we identified individual barriers such as reservoirs that effectively minimize gene flow in sensitive understorey birds, revealing that terrestrial forest species may exhibit levels of sensitivity to fragmentation far greater than previously expected. This study provides a blueprint for conservation genomics at small scales with a view to identifying preferred locations for habitat corridors, flagging candidate populations for restocking with translocated individuals and improving the design of future reserves.

12.
Syst Biol ; 69(5): 820-829, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32415976

RESUMO

The bowerbirds in New Guinea and Australia include species that build the largest and perhaps most elaborately decorated constructions outside of humans. The males use these courtship bowers, along with their displays, to attract females. In these species, the mating system is polygynous and the females alone incubate and feed the nestlings. The bowerbirds also include 10 species of the socially monogamous catbirds in which the male participates in most aspects of raising the young. How the bower-building behavior evolved has remained poorly understood, as no comprehensive phylogeny exists for the family. It has been assumed that the monogamous catbird clade is sister to all polygynous species. We here test this hypothesis using a newly developed pipeline for obtaining homologous alignments of thousands of exonic and intronic regions from genomic data to build a phylogeny. Our well-supported species tree shows that the polygynous, bower-building species are not monophyletic. The result suggests either that bower-building behavior is an ancestral condition in the family that was secondarily lost in the catbirds, or that it has arisen in parallel in two lineages of bowerbirds. We favor the latter hypothesis based on an ancestral character reconstruction showing that polygyny but not bower-building is ancestral in bowerbirds, and on the observation that Scenopoeetes dentirostris, the sister species to one of the bower-building clades, does not build a proper bower but constructs a court for male display. This species is also sexually monomorphic in plumage despite having a polygynous mating system. We argue that the relatively stable tropical and subtropical forest environment in combination with low predator pressure and rich food access (mostly fruit) facilitated the evolution of these unique life-history traits. [Adaptive radiation; bowerbirds; mating system, sexual selection; whole genome sequencing.].


Assuntos
Evolução Biológica , Aves/classificação , Aves/fisiologia , Comportamento de Nidação , Filogenia , Animais
13.
Zootaxa ; 4747(1): zootaxa.4747.1.7, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32230123

RESUMO

A new classification is proposed for the subfamily Fluvicolinae in the New World Flycatchers (Tyrannidae), based on the results of a previously published phylogeny including more than 90% of the species. In this classification we propose one new family level name (Ochthoecini) and one new generic name (Scotomyias). We also resurrect three genera (Heteroxolmis, Pyrope and Nengetus) and subsume five (Tumbezia, Lathrotriccus, Polioxolmis, Neoxolmis and Myiotheretes) into other genera to align the classification with the current understanding of phylogenetic relationships in Fluvicolinae.


Assuntos
Passeriformes , Aves Canoras , Animais , Filogenia
14.
Commun Biol ; 3(1): 84, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32081985

RESUMO

Ancient remains found in permafrost represent a rare opportunity to study past ecosystems. Here, we present an exceptionally well-preserved ancient bird carcass found in the Siberian permafrost, along with a radiocarbon date and a reconstruction of its complete mitochondrial genome. The carcass was radiocarbon dated to approximately 44-49 ka BP, and was genetically identified as a female horned lark. This is a species that usually inhabits open habitat, such as the steppe environment that existed in Siberia at the time. This near-intact carcass highlights the potential of permafrost remains for evolutionary studies that combine both morphology and ancient nucleic acids.


Assuntos
Aves , Osso e Ossos/metabolismo , Fósseis , Técnicas Genéticas , Determinação da Idade pelo Esqueleto/métodos , Determinação da Idade pelo Esqueleto/veterinária , Animais , Aves/classificação , Aves/genética , Osso e Ossos/anatomia & histologia , Osso e Ossos/química , Ecossistema , Feminino , Fósseis/anatomia & histologia , Fósseis/patologia , Técnicas Genéticas/veterinária , Genética Populacional , Sedimentos Geológicos/análise , História Antiga , Masculino , Paleontologia , Pergelissolo , Filogenia , Datação Radiométrica , Análise para Determinação do Sexo/métodos , Análise para Determinação do Sexo/veterinária , Sibéria
15.
PeerJ ; 8: e8225, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32025365

RESUMO

Natural history museums are unique spaces for interdisciplinary research and educational innovation. Through extensive exhibits and public programming and by hosting rich communities of amateurs, students, and researchers at all stages of their careers, they can provide a place-based window to focus on integration of science and discovery, as well as a locus for community engagement. At the same time, like a synthesis radio telescope, when joined together through emerging digital resources, the global community of museums (the 'Global Museum') is more than the sum of its parts, allowing insights and answers to diverse biological, environmental, and societal questions at the global scale, across eons of time, and spanning vast diversity across the Tree of Life. We argue that, whereas natural history collections and museums began with a focus on describing the diversity and peculiarities of species on Earth, they are now increasingly leveraged in new ways that significantly expand their impact and relevance. These new directions include the possibility to ask new, often interdisciplinary questions in basic and applied science, such as in biomimetic design, and by contributing to solutions to climate change, global health and food security challenges. As institutions, they have long been incubators for cutting-edge research in biology while simultaneously providing core infrastructure for research on present and future societal needs. Here we explore how the intersection between pressing issues in environmental and human health and rapid technological innovation have reinforced the relevance of museum collections. We do this by providing examples as food for thought for both the broader academic community and museum scientists on the evolving role of museums. We also identify challenges to the realization of the full potential of natural history collections and the Global Museum to science and society and discuss the critical need to grow these collections. We then focus on mapping and modelling of museum data (including place-based approaches and discovery), and explore the main projects, platforms and databases enabling this growth. Finally, we aim to improve relevant protocols for the long-term storage of specimens and tissues, ensuring proper connection with tomorrow's technologies and hence further increasing the relevance of natural history museums.

16.
Natl Sci Rev ; 7(1): 113-127, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34692022

RESUMO

Known as the 'third polar region', the Qinghai-Tibet Plateau represents one of the harshest highland environments in the world and yet a number of organisms thrive there. Previous studies of birds, animals and humans have focused on well-differentiated populations in later stages of phenotypic divergence. The adaptive processes during the initial phase of highland adaptation remain poorly understood. We studied a human commensal, the Eurasian Tree Sparrow, which has followed human agriculture to the Qinghai-Tibet Plateau. Despite strong phenotypic differentiation at multiple levels, in particular in muscle-related phenotypes, highland and lowland populations show shallow genomic divergence and the colonization event occurred within the past few thousand years. In a one-month acclimation experiment investigating phenotypic plasticity, we exposed adult lowland tree sparrows to a hypoxic environment and did not observe muscle changes. Through population genetic analyses, we identified a signature of polygenic adaptation, whereby shifts in allele frequencies are spread across multiple loci, many of which are associated with muscle-related processes. Our results reveal a case of positive selection in which polygenic adaptation appears to drive rapid phenotypic evolution, shedding light on early stages of adaptive evolution to a novel environment.

17.
Genome Biol Evol ; 11(8): 2332-2343, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31418795

RESUMO

Müllerian mimicry rings are remarkable symbiotic species assemblages in which multiple members share a similar phenotype. However, their evolutionary origin remains poorly understood. Although gene flow among species has been shown to generate mimetic patterns in some Heliconius butterflies, mimicry is believed to be due to true convergence without gene flow in many other cases. We investigated the evolutionary history of multiple members of a passerine mimicry ring in the poisonous Papuan pitohuis. Previous phylogenetic evidence indicates that the aposematic coloration shared by many, but not all, members of this genus is ancestral and has only been retained by members of the mimicry ring. Using a newly assembled genome and thousands of genomic DNA markers, we demonstrate gene flow from the hooded pitohui (Pitohui dichrous) into the southern variable pitohui (Pitohui uropygialis), consistent with shared patterns of aposematic coloration. The vicinity of putatively introgressed loci is significantly enriched for genes that are important in melanin pigment expression and toxin resistance, suggesting that gene flow may have been instrumental in the sharing of plumage patterns and toxicity. These results indicate that interspecies gene flow may be a more general mechanism in generating mimicry rings than hitherto appreciated.


Assuntos
Animais Peçonhentos/genética , Evolução Biológica , Fluxo Gênico , Genoma , Pigmentação/genética , Proteínas/genética , Aves Canoras/genética , Animais , Fenótipo , Filogenia , Aves Canoras/classificação , Especificidade da Espécie
18.
BMC Evol Biol ; 19(1): 151, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31340765

RESUMO

BACKGROUND: Allopatric speciation has played a particularly important role in archipelagic settings where populations evolve in isolation after colonizing different islands. The Indo-Australasian island realm is an unparalleled natural laboratory of biotic diversification. Here we explore how the level of earth-historic isolation has influenced genetic differentiation across the region by investigating phylogeographic patterns in the Pitta sordida species complex. RESULTS: We generated a de novo genome and compared population genomics of 29 individuals of Pitta sordida from the entire distributional range and we reconstructed phylogenetic relationship using mitogenomes, a multi-nuclear gene dataset and single nucleotide polymorphisms (SNPs). We found deep divergence between an eastern and a western group of taxa across Indo-Australasia. Within both groups we have identified major lineages that are geographically separated into Philippines, Borneo, western Sundaland, and New Guinea, respectively. Although these lineages are genetically well-differentiated, suggesting a long-term isolation, there are signatures of extensive gene flow within each lineage throughout the Pleistocene, despite the wide geographic range occupied by some of them. We found little evidence of hybridization or introgression among the studied taxa, but forsteni from Sulawesi makes an exception. This individual, belonging to the eastern clade, is genetically admixed between the western and eastern clades. Geographically this makes sense as Sulawesi is not far from Borneo that houses a population of hooded pittas that belongs to the western clade. CONCLUSIONS: We found that geological vicariance events cannot explain the current genetic differentiation in the Pitta sordida species complex. Instead, the glacial-interglacial cycles may have played a major role therein. During glacials the sea level could be up to 120 m lower than today and land bridges formed within both the Sunda Shelf and the Sahul Shelf permitting dispersal of floral and faunal elements. The geographic distribution of hooded pittas shows the importance of overwater, "stepping-stone" dispersals not only to deep-sea islands, but also from one shelf to the other. The most parsimonious hypothesis is an Asian ancestral home of the Pitta sordida species complex and a colonization from west to east, probably via Wallacea.


Assuntos
Planeta Terra , Genoma , Ilhas , Passeriformes/genética , Animais , Austrália , Fluxo Gênico , Variação Genética , Índia , Filogenia , Filogeografia , Dinâmica Populacional , Análise de Componente Principal , Fatores de Tempo
19.
Mol Phylogenet Evol ; 137: 200-209, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30914395

RESUMO

Old World orioles (Oriolidae) are medium-sized passerine birds confined largely to forested areas of Africa, Eurasia and Australasia. We present a new complete molecular (mtDNA) subspecies level phylogeny of the Oriolidae including all 113 taxa (35 species) together with a backbone phylogeny of 19 taxa from the main Oriolus clades based on (i) 21 nuclear genes, (ii) whole mito-genomes, and (iii) genome-wide ultraconserved elements. We use this phylogeny to assess systematic relationships and the biogeographical history of this avian family. Furthermore, we use morphological measurements to investigate the relationship between size and shape axes and upstream or back-colonization of this extensive island region from Asia. We show that several subspecies or groups of subspecies may warrant species rank and we find a continental example of two morphologically distinct species (O. mellianus/O. traillii) being genetically (mtDNA) very similar. Biogeographically, we confirm previous findings that members of the Oriolidae originated in Australo-Papua. Dispersal out of this area took place around 15 Mya to southeast Asia and Africa, and from Africa to the Palearctic followed by recolonization of the Indonesian and Philippine island region during the Plio-Pleistocene. Recolonisation of the Indonesian and Philippine islands coincided with an increase in body size, which may have facilitated the ability to co-exist with other congenerics.


Assuntos
Passeriformes/classificação , Filogenia , Animais , Australásia , DNA Mitocondrial/genética , Funções Verossimilhança , Passeriformes/genética , Especificidade da Espécie , Fatores de Tempo
20.
Gigascience ; 8(5)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30689847

RESUMO

The diverse array of phenotypes and courtship displays exhibited by birds-of-paradise have long fascinated scientists and nonscientists alike. Remarkably, almost nothing is known about the genomics of this iconic radiation. There are 41 species in 16 genera currently recognized within the birds-of-paradise family (Paradisaeidae), most of which are endemic to the island of New Guinea. In this study, we sequenced genomes of representatives from all five major clades within this family to characterize genomic changes that may have played a role in the evolution of the group's extensive phenotypic diversity. We found genes important for coloration, morphology, and feather and eye development to be under positive selection. In birds-of-paradise with complex lekking systems and strong sexual dimorphism, the core birds-of-paradise, we found Gene Ontology categories for "startle response" and "olfactory receptor activity" to be enriched among the gene families expanding significantly faster compared to the other birds in our study. Furthermore, we found novel families of retrovirus-like retrotransposons active in all three de novo genomes since the early diversification of the birds-of-paradise group, which might have played a role in the evolution of this fascinating group of birds.


Assuntos
Evolução Molecular , Genoma/genética , Genômica , Passeriformes/genética , Animais , Anotação de Sequência Molecular , Nova Guiné , Fenótipo , Filogenia , Caracteres Sexuais , Sequenciamento Completo do Genoma/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...