Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 19(24): 9228-9238, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38051663

RESUMO

The simulation of intrinsic contributions to molecular properties holds the potential to allow for chemistry to be directly inferred from changes to electronic structures at the atomic level. In the present study, we demonstrate how such local properties can be readily derived from suitable molecular orbitals to yield effective fingerprints of various types of atoms in organic molecules. In contrast, corresponding inferences from schemes that instead make use of individual atomic orbitals for this purpose are generally found to fail in expressing much uniqueness in atomic environments. By further studying the extent to which entire chemical reactions may be decomposed into meaningful and continuously evolving atomic contributions, schemes based on molecular rather than atomic orbitals are once again found to be the more consistent, even allowing for intricate differences between seemingly uniform nucleophilic substitutions to be probed.

2.
J Phys Chem A ; 127(15): 3535-3542, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37040131

RESUMO

We present a novel algorithm for (i) detecting approximate symmetries inherently present among spatially localized molecular orbitals and (ii) enforcing these in numerically exact manners by means of unitary optimization techniques. The vast potential of our algorithm to compress a full set of molecular orbitals into only a minimal set of symmetry-unique orbitals is demonstrated, starting from localized bases of either Pipek-Mezey or Foster-Boys orbitals. Comparisons of results based on either of these two localization procedures indicate that Foster-Boys molecular orbitals can be spanned by a smaller number of symmetry-unique orbitals on average, making these outstanding candidates for the exploitation of general, (non-)Abelian point-group symmetries in a range of local correlation methods. As an illustration of said compressibility, our algorithm is capable of identifying a mere 14 symmetry-unique orbitals for the buckminsterfullerene in the highly symmetric Ih molecular point group, corresponding to only 1.7% of its total 840 molecular orbitals in a standard double-ζ basis set. The present work thus marks an important advancement in the exploitation of point-group symmetry within local correlation methods, for which the appropriate adaption of symmetry uniqueness among orbitals has the potential to yield unprecedented speed-ups.

3.
J Chem Theory Comput ; 19(7): 2029-2038, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36926874

RESUMO

We apply a number of atomic decomposition schemes across the standard QM7 data set─a small model set of organic molecules at equilibrium geometry─to inspect the possible emergence of trends among contributions to atomization energies from distinct elements embedded within molecules. Specifically, a recent decomposition scheme of ours based on spatially localized molecular orbitals is compared to alternatives that instead partition molecular energies on account of which nuclei individual atomic orbitals are centered on. We find these partitioning schemes to expose the composition of chemical compound space in very dissimilar ways in terms of the grouping, binning, and heterogeneity of discrete atomic contributions, e.g., those associated with hydrogens bonded to different heavy atoms. Furthermore, unphysical dependencies on the one-electron basis set are found for some, but not all of these schemes. The relevance and importance of these compositional factors for training tailored neural network models based on atomic energies are next assessed. We identify both limitations and possible advantages with respect to contemporary machine learning models and discuss the design of potential counterparts based on atoms and the intrinsic energies of these as the principal decomposition units.

4.
7.
J Chem Phys ; 156(6): 061101, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35168332

RESUMO

The potential of mean-field decomposition techniques in interpreting electronic transitions in molecules is explored, in particular, the usefulness of these for offering computational signatures of different classes of such excitations. When viewed as a conceptual lens for this purpose, decomposed results are presented for ground- and excited-state energies and dipole moments of selected prototypical organic dyes, and the discrete nature of these properties as well as how they change upon transitioning from one state to another is analyzed without recourse to a discussion based on the involved molecular orbitals. On the basis of results obtained both with and without an account of continuum solvation, our work is further intended to shed new light on practical and pathological differences in between various functional approximations in orbital-optimized Kohn-Sham density functional theory for excited states, equipping practitioners and developers in the field with new probes and possible validation tools.

8.
J Phys Chem Lett ; 12(26): 6048-6055, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34165982

RESUMO

The present work demonstrates a robust protocol for probing localized electronic structure in condensed-phase systems, operating in terms of a recently proposed theory for decomposing the results of Kohn-Sham density functional theory in a basis of spatially localized molecular orbitals. In an initial application to liquid, ambient water and the assessment of the solvation energy and the embedded dipole moment of H2O in solution, we find that both properties are amplified on average-in accordance with expectation-and that correlations are indeed observed to exist between them. However, the simulated solvent-induced shift to the dipole moment of water is found to be significantly dampened with respect to typical literature values. The local nature of our methodology has further allowed us to evaluate the convergence of bulk properties with respect to the extent of the underlying one-electron basis set, ranging from single-ζ to full (augmented) quadruple-ζ quality. Albeit a pilot example, our work paves the way toward future studies of local effects and defects in more complex phases, e.g., liquid mixtures and even solid-state crystals.

9.
J Phys Chem Lett ; 12(1): 418-432, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33356287

RESUMO

We present a Perspective on what the future holds for full configuration interaction (FCI) theory, with an emphasis on conceptual rather than technical details. Upon revisiting the early history of FCI, a number of its key contemporary approximations are compared on as equal a footing as possible, using a recent blind challenge on the benzene molecule as a testbed [Eriksen et al., J. Phys. Chem. Lett., 2020 11, 8922]. In the process, we review the scope of applications for which FCI continues to prove indispensable, and the required traits in terms of robustness, efficacy, and reliability its modern approximations must satisfy are discussed. We close by conveying a number of general observations on the merits offered by the state-of-the-art alongside some of the challenges still faced to this day. While the field has altogether seen immense progress over the years-the past decade, in particular-it remains clear that our community as a whole has a substantial way to go in enhancing the overall applicability of near-exact electronic structure theory for systems of general composition and increasing size.

10.
J Chem Phys ; 153(21): 214109, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33291929

RESUMO

We introduce new and robust decompositions of mean-field Hartree-Fock and Kohn-Sham density functional theory relying on the use of localized molecular orbitals and physically sound charge population protocols. The new lossless property decompositions, which allow for partitioning one-electron reduced density matrices into either bond-wise or atomic contributions, are compared to alternatives from the literature with regard to both molecular energies and dipole moments. Besides commenting on possible applications as an interpretative tool in the rationalization of certain electronic phenomena, we demonstrate how decomposed mean-field theory makes it possible to expose and amplify compositional features in the context of machine-learned quantum chemistry. This is made possible by improving upon the granularity of the underlying data. On the basis of our preliminary proof-of-concept results, we conjecture that many of the structure-property inferences in existence today may be further refined by efficiently leveraging an increase in dataset complexity and richness.

11.
J Phys Chem Lett ; 11(20): 8922-8929, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33022176

RESUMO

We report on the findings of a blind challenge devoted to determining the frozen-core, full configuration interaction (FCI) ground-state energy of the benzene molecule in a standard correlation-consistent basis set of double-ζ quality. As a broad international endeavor, our suite of wave function-based correlation methods collectively represents a diverse view of the high-accuracy repertoire offered by modern electronic structure theory. In our assessment, the evaluated high-level methods are all found to qualitatively agree on a final correlation energy, with most methods yielding an estimate of the FCI value around -863 mEH. However, we find the root-mean-square deviation of the energies from the studied methods to be considerable (1.3 mEH), which in light of the acclaimed performance of each of the methods for smaller molecular systems clearly displays the challenges faced in extending reliable, near-exact correlation methods to larger systems. While the discrepancies exposed by our study thus emphasize the fact that the current state-of-the-art approaches leave room for improvement, we still expect the present assessment to provide a valuable community resource for benchmark and calibration purposes going forward.

12.
J Chem Phys ; 153(15): 154107, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33092374

RESUMO

The recently proposed many-body expanded full configuration interaction (MBE-FCI) method is extended to excited states and static first-order properties different from total, ground state correlation energies. Results are presented for excitation energies and (transition) dipole moments of two prototypical, heteronuclear diatomics-LiH and MgO-in augmented correlation consistent basis sets of up to quadruple-ζ quality. Given that MBE-FCI properties are evaluated without recourse to a sampled wave function and the storage of corresponding reduced density matrices, the memory overhead associated with the calculation of general first-order properties only scales with the dimension of the desired property. In combination with the demonstrated performance, the present developments are bound to admit a wide range of future applications by means of many-body expanded treatments of electron correlation.

13.
J Chem Phys ; 153(2): 024109, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668948

RESUMO

PySCF is a Python-based general-purpose electronic structure platform that supports first-principles simulations of molecules and solids as well as accelerates the development of new methodology and complex computational workflows. This paper explains the design and philosophy behind PySCF that enables it to meet these twin objectives. With several case studies, we show how users can easily implement their own methods using PySCF as a development environment. We then summarize the capabilities of PySCF for molecular and solid-state simulations. Finally, we describe the growing ecosystem of projects that use PySCF across the domains of quantum chemistry, materials science, machine learning, and quantum information science.

14.
J Phys Chem Lett ; 10(24): 7910-7915, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31774289

RESUMO

Facilitated by a rigorous partitioning of a molecular system's orbital basis into two fundamental subspaces-a reference and an expansion space, both with orbitals of unspecified occupancy-we generalize our recently introduced many-body expanded full configuration interaction (MBE-FCI) method to allow for electron-rich model and molecular systems dominated by both weak and strong correlation to be addressed. By employing minimal or even empty reference spaces, we show through calculations on the one-dimensional Hubbard model with up to 46 lattice sites, the chromium dimer, and the benzene molecule how near-exact results may be obtained in an entirely unbiased manner for chemical and physical problems of not only academic but also applied chemical interest. Given the massive parallelism and overall accuracy of the resulting method, we argue that generalized MBE-FCI theory possesses an immense potential to yield near-exact correlation energies for molecular systems of unprecedented size, composition, and complexity in the years to come.

15.
J Chem Theory Comput ; 15(9): 4873-4884, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31381327

RESUMO

In this second part of our series on the recently proposed many-body expanded full configuration interaction (MBE-FCI) method, we introduce the concept of multideterminantal expansion references. Through theoretical arguments and numerical validations, the use of this class of starting points is shown to result in a focused compression of the MBE decomposition of the FCI energy, thus allowing chemical problems dominated by strong correlation to be addressed by the method. The general applicability and performance enhancements of MBE-FCI are verified for standard stress tests such as the bond dissociations in H2O, N2, C2, and a linear H10 chain. Furthermore, the benefits of employing a multideterminantal expansion reference in accelerating calculations of high accuracy are discussed, with an emphasis on calculations in extended basis sets. As an illustration of this latter quality of the MBE-FCI method, results for H2O and C2 in basis sets ranging from double- to pentuple-ζ quality are presented, demonstrating near-ideal parallel scaling on up to almost 25000 processing units.

16.
J Chem Theory Comput ; 14(10): 5180-5191, 2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30125481

RESUMO

Over the course of the past few decades, the field of computational chemistry has managed to manifest itself as a key complement to more traditional lab-oriented chemistry. This is particularly true in the wake of the recent renaissance of full configuration interaction (FCI)-level methodologies, albeit only if these can prove themselves sufficiently robust and versatile to be routinely applied to a variety of chemical problems of interest. In the present series of works, performance and feature enhancements of one such avenue toward FCI-level results for medium to large one-electron basis sets, the recently introduced many-body expanded full configuration interaction (MBE-FCI) formalism [ J. Phys. Chem. Lett. 2017 , 8 , 4633 ], will be presented. Specifically, in this opening part of the series, the capabilities of the MBE-FCI method in producing near-exact ground state energies for weakly correlated molecules of any spin multiplicity will be demonstrated.

17.
J Phys Chem Lett ; 8(18): 4633-4639, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28892390

RESUMO

It is demonstrated how full configuration interaction (FCI) results in extended basis sets may be obtained to within sub-kJ/mol accuracy by decomposing the energy in terms of many-body expansions in the virtual orbitals of the molecular system at hand. This extension of the FCI application range lends itself to two unique features of the current approach, namely, that the total energy calculation can be performed entirely within considerably reduced orbital subspaces and may be so by means of embarrassingly parallel programming. Facilitated by a rigorous and methodical screening protocol and further aided by expansion points different from the Hartree-Fock solution, all-electron numerical results are reported for H2O in polarized core-valence basis sets ranging from double-ζ (10 e, 28 o) to quadruple-ζ (10 e, 144 o) quality.

18.
J Chem Phys ; 145(22): 224104, 2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-27984892

RESUMO

The convergence of a recently proposed coupled cluster (CC) family of perturbation series [J. J. Eriksen et al., J. Chem. Phys. 140, 064108 (2014)], in which the energetic difference between two CC models-a low-level parent and a high-level target model-is expanded in orders of the Møller-Plesset (MP) fluctuation potential, is investigated for four prototypical closed-shell systems (Ne, singlet CH2, distorted HF, and F-) in standard and augmented basis sets. In these investigations, energy corrections of the various series have been calculated to high orders and their convergence radii have been determined by probing for possible front- and back-door intruder states, the existence of which would make the series divergent. In summary, we conclude how it is primarily the choice of the target state, and not the choice of the parent state, which ultimately governs the convergence behavior of a given series. For example, restricting the target state to, say, triple or quadruple excitations might remove intruders present in series which target the full configuration interaction limit, such as the standard MP series. Furthermore, we find that whereas a CC perturbation series might converge within standard correlation consistent basis sets, it may start to diverge whenever these become augmented by diffuse functions, similar to the MP case. However, unlike for the MP case, such potential divergences are not found to invalidate the practical use of the low-order corrections of the CC perturbation series.

19.
J Chem Phys ; 144(19): 194102, 2016 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-27208931

RESUMO

The accuracy at which total energies of open-shell atoms and organic radicals may be calculated is assessed for selected coupled cluster perturbative triples expansions, all of which augment the coupled cluster singles and doubles (CCSD) energy by a non-iterative correction for the effect of triple excitations. Namely, the second- through sixth-order models of the recently proposed CCSD(T-n) triples series [J. J. Eriksen et al., J. Chem. Phys. 140, 064108 (2014)] are compared to the acclaimed CCSD(T) model for both unrestricted as well as restricted open-shell Hartree-Fock (UHF/ROHF) reference determinants. By comparing UHF- and ROHF-based statistical results for a test set of 18 modest-sized open-shell species with comparable RHF-based results, no behavioral differences are observed for the higher-order models of the CCSD(T-n) series in their correlated descriptions of closed- and open-shell species. In particular, we find that the convergence rate throughout the series towards the coupled cluster singles, doubles, and triples (CCSDT) solution is identical for the two cases. For the CCSD(T) model, on the other hand, not only its numerical consistency, but also its established, yet fortuitous cancellation of errors breaks down in the transition from closed- to open-shell systems. The higher-order CCSD(T-n) models (orders n > 3) thus offer a consistent and significant improvement in accuracy relative to CCSDT over the CCSD(T) model, equally for RHF, UHF, and ROHF reference determinants, albeit at an increased computational cost.

20.
J Chem Phys ; 144(19): 194103, 2016 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-27208932

RESUMO

We extend our assessment of the potential of perturbative coupled cluster (CC) expansions for a test set of open-shell atoms and organic radicals to the description of quadruple excitations. Namely, the second- through sixth-order models of the recently proposed CCSDT(Q-n) quadruples series [J. J. Eriksen et al., J. Chem. Phys. 140, 064108 (2014)] are compared to the prominent CCSDT(Q) and ΛCCSDT(Q) models. From a comparison of the models in terms of their recovery of total CC singles, doubles, triples, and quadruples (CCSDTQ) energies, we find that the performance of the CCSDT(Q-n) models is independent of the reference used (unrestricted or restricted (open-shell) Hartree-Fock), in contrast to the CCSDT(Q) and ΛCCSDT(Q) models, for which the accuracy is strongly dependent on the spin of the molecular ground state. By further comparing the ability of the models to recover relative CCSDTQ total atomization energies, the discrepancy between them is found to be even more pronounced, stressing how a balanced description of both closed- and open-shell species-as found in the CCSDT(Q-n) models-is indeed of paramount importance if any perturbative CC model is to be of chemical relevance for high-accuracy applications. In particular, the third-order CCSDT(Q-3) model is found to offer an encouraging alternative to the existing choices of quadruples models used in modern computational thermochemistry, since the model is still only of moderate cost, albeit markedly more costly than, e.g., the CCSDT(Q) and ΛCCSDT(Q) models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...