Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
J Neurochem ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721627

RESUMO

The elimination of amyloid-beta (Aß) plaques in Alzheimer's disease patients after treatment with anti-Aß antibodies such as lecanemab and aducanumab is supported by a substantially decreased signal in amyloid positron emission tomography (PET) imaging. However, this decreased PET signal has not been matched by a similar substantial effect on cognitive function. There may be several reasons for this, including short treatment duration and advanced disease stages among the patients. However, one aspect that has not been investigated, and the subject of this study, is whether antibody engagement with amyloid plaques inhibits the binding of amyloid-PET ligands, leading to a false impression of Aß removal from the brain. In the present study, tg-ArcSwe mice received three injections of RmAb158, the murine version of lecanemab or phosphate-buffered saline (PBS) before the administration of the amyloid-PET radioligand [11C]PiB, followed by isolation of brain tissue. Autoradiography showed that RmAb158- and PBS-treated mice displayed similar [11C]PiB binding. Moreover, the total Aß1-40 levels, representing the major Aß species of plaques in the tg-ArcSwe model, as well as soluble triggering receptor on myeloid cells 2 (sTREM2) levels, were similar in both groups. Interestingly, the concentration of soluble Aß aggregates was decreased in the RmAb158-treated group, along with a small but significant decrease in the total Aß1-42 levels. In conclusion, this study indicates that the binding of [11C]PiB to Aß accurately mirrors the load of Aß plaques in the brain, aligning with how amyloid-PET is interpreted in clinical studies of anti-Aß antibodies. However, early treatment effects on soluble Aß aggregates and Aß1-42 levels were not detected.

2.
iScience ; 27(5): 109688, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38660405

RESUMO

Non-invasive assessment of fibrogenic activity, rather than fibrotic scars, could significantly improve the management of fibrotic diseases and the development of anti-fibrotic drugs. This study explores the potential of an Affibody molecule (Z09591) labeled with the Al(18)F-restrained complexing agent (RESCA) method as a tracer for the non-invasive detection of fibrogenic cells. Z09591 was functionalized with the RESCA chelator for direct labeling with [18F]AlF. In vivo positron emission tomography/magnetic resonance imaging scans on U-87 tumor-bearing mice exhibited high selectivity of the resulting radiotracer, [18F]AlF-RESCA-Z09591, for platelet-derived growth factor receptor ß (PDGFRß), with minimal non-specific background uptake. Evaluation in a mouse model with carbon tetrachloride-induced fibrotic liver followed by a disease regression phase, revealed the radiotracer's high affinity and specificity for fibrogenic cells in fibrotic livers (standardized uptake value [SUV] 0.43 ± 0.05), with uptake decreasing during recovery (SUV 0.29 ± 0.03) (p < 0.0001). [18F]AlF-RESCA-Z09591 accurately detects PDGFRß, offering non-invasive assessment of fibrogenic cells and promising applications in precise liver fibrogenesis diagnosis, potentially contributing significantly to anti-fibrotic drug development.

3.
J Pharm Biomed Anal ; 245: 116144, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636193

RESUMO

Modified messenger RNA (mRNA) represents a rapidly emerging class of therapeutic drug product. Development of robust stability indicating methods for control of product quality are therefore critical to support successful pharmaceutical development. This paper presents an ion-pair reversed-phase liquid chromatography (IP-RPLC) method to characterise modified mRNA exposed to a wide set of stress-inducing conditions, relevant for pharmaceutical development of an mRNA drug product. The optimised method could be used for separation and analysis of large RNA, sized up to 1000 nucleotides. Column temperature, mobile phase flow rate and ion-pair selection were each studied and optimised. Baseline separations of the model RNA ladder sample were achieved using all examined ion-pairing agents. We established that the optimised method, using 100 mM Triethylamine, enabled the highest resolution separation for the largest fragments in the RNA ladder (750/1000 nucleotides), in addition to the highest overall resolution for the selected modified mRNA compound (eGFP mRNA, 996 nucleotides). The stability indicating power of the method was demonstrated by analysing the modified eGFP mRNA, upon direct exposure to heat, hydrolytic conditions and treatment with ribonucleases. Our results showed that the formed degradation products, which appeared as shorter RNA fragments in front of the main peak, could be well monitored, using the optimised method, and the relative stability of the mRNA under the various stressed conditions could be assessed.


Assuntos
Cromatografia de Fase Reversa , RNA Mensageiro , Cromatografia de Fase Reversa/métodos , RNA Mensageiro/genética , Estabilidade de RNA , Proteínas de Fluorescência Verde/genética , Etilaminas/química
4.
EJNMMI Radiopharm Chem ; 9(1): 21, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446356

RESUMO

BACKGROUND: The brain is a challenging target for antibody-based positron emission tomography (immunoPET) imaging due to the restricted access of antibody-based ligands through the blood-brain barrier (BBB). To overcome this physiological obstacle, we have previously developed bispecific antibody ligands that pass through the BBB via receptor-mediated transcytosis. While these radiolabelled ligands have high affinity and specificity, their long residence time in the blood and brain, typical for large molecules, poses another challenge for PET imaging. A viable solution could be a two-step pre-targeting approach which involves the administration of a tagged antibody that accumulates at the target site in the brain and then clears from the blood, followed by administration of a small radiolabelled molecule with fast kinetics. This radiolabelled molecule can couple to the tagged antibody and thereby make the antibody localisation visible by PET imaging. The in vivo linkage can be achieved by using the inverse electron demand Diels-Alder reaction (IEDDA), with trans-cyclooctene (TCO) and tetrazine groups participating as reactants. In this study, two novel 18F-labelled tetrazines were synthesized and evaluated for their potential use as pre-targeting imaging agents, i.e., for their ability to rapidly enter the brain and, if unbound, to be efficiently cleared with minimal background retention. RESULTS: The two compounds, a methyl tetrazine [18F]MeTz and an H-tetrazine [18F]HTz were radiolabelled using a two-step procedure via [18F]F-Py-TFP synthesized on solid support followed by amidation with amine-bearing tetrazines, resulting in radiochemical yields of 24% and 22%, respectively, and a radiochemical purity of > 96%. In vivo PET imaging was performed to assess their suitability for in vivo pre-targeting. Time-activity curves from PET-scans showed [18F]MeTz to be the more pharmacokinetically suitable agent, given its fast and homogenous distribution in the brain and rapid clearance. However, in terms of rection kinetics, H-tetrazines are advantageous, exhibiting faster reaction rates in IEDDA reactions with dienophiles like trans-cyclooctenes, making [18F]HTz potentially more beneficial for pre-targeting applications. CONCLUSION: This study demonstrates a significant potential of [18F]MeTz and [18F]HTz as agents for pre-targeted PET brain imaging due to their efficient brain uptake, swift clearance and appropriate chemical stability.

5.
Acta Neuropathol Commun ; 12(1): 22, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317196

RESUMO

Deposition of amyloid beta (Aß) into plaques is a major hallmark of Alzheimer's disease (AD). Different amyloid precursor protein (APP) mutations cause early-onset AD by altering the production or aggregation properties of Aß. We recently identified the Uppsala APP mutation (APPUpp), which causes Aß pathology by a triple mechanism: increased ß-secretase and altered α-secretase APP cleavage, leading to increased formation of a unique Aß conformer that rapidly aggregates and deposits in the brain. The aim of this study was to further explore the effects of APPUpp in a transgenic mouse model (tg-UppSwe), expressing human APP with the APPUpp mutation together with the APPSwe mutation. Aß pathology was studied in tg-UppSwe brains at different ages, using ELISA and immunohistochemistry. In vivo PET imaging with three different PET radioligands was conducted in aged tg-UppSwe mice and two other mouse models; tg-ArcSwe and tg-Swe. Finally, glial responses to Aß pathology were studied in cell culture models and mouse brain tissue, using ELISA and immunohistochemistry. Tg-UppSwe mice displayed increased ß-secretase cleavage and suppressed α-secretase cleavage, resulting in AßUpp42 dominated diffuse plaque pathology appearing from the age of 5-6 months. The γ-secretase cleavage was not affected. Contrary to tg-ArcSwe and tg-Swe mice, tg-UppSwe mice were [11C]PiB-PET negative. Antibody-based PET with the 3D6 ligand visualized Aß pathology in all models, whereas the Aß protofibril selective mAb158 ligand did not give any signals in tg-UppSwe mice. Moreover, unlike the other two models, tg-UppSwe mice displayed a very faint glial response to the Aß pathology. The tg-UppSwe mouse model thus recapitulates several pathological features of the Uppsala APP mutation carriers. The presumed unique structural features of AßUpp42 aggregates were found to affect their interaction with anti-Aß antibodies and profoundly modify the Aß-mediated glial response, which may be important aspects to consider for further development of AD therapies.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Humanos , Camundongos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Gliose/patologia , Ligantes , Camundongos Transgênicos
6.
EJNMMI Res ; 13(1): 107, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38100042

RESUMO

BACKGROUND: Beta-cell replacement methods such as transplantation of isolated donor islets have been proposed as a curative treatment of type 1 diabetes, but widespread application is challenging due to shortages of donor tissue and the need for continuous immunosuppressive treatments. Stem-cell-derived islets have been suggested as an alternative source of beta cells, but face transplantation protocols optimization difficulties, mainly due to a lack of available methods and markers to directly monitor grafts survival, as well as their localization and function. Molecular imaging techniques and particularly positron emission tomography has been suggested as a tool for monitoring the fate of islets after clinical transplantation. The integral membrane protein DGCR2 has been demonstrated to be a potential pancreatic islet biomarker, with specific expression on insulin-positive human embryonic stem-cell-derived pancreatic progenitor cells. The candidate Affibody molecule ZDGCR2:AM106 was radiolabeled with fluorine-18 using a novel click chemistry-based approach. The resulting positron emission tomography tracer [18F]ZDGCR2:AM106 was evaluated for binding to recombinant human DGCR2 and cryosections of stem-cell-derived islets, as well as in vivo using an immune-deficient mouse model transplanted with stem-cell-derived islets. Biodistribution of the [18F]ZDGCR2:AM106 was also assessed in healthy rats and pigs. RESULTS: [18F]ZDGCR2:AM106 was successfully synthesized with high radiochemical purity and yield via a pretargeting approach. [18F]ZDGCR2:AM106 retained binding to recombinant human DCGR2 as well as to cryosectioned stem-cell-derived islets, but in vivo binding to native pancreatic tissue in both rat and pig was low. However, in vivo uptake of [18F]ZDGCR2:AM106 in stem-cell-derived islets transplanted in the immunodeficient mice was observed, albeit only within the early imaging frames after injection of the radiotracer. CONCLUSION: Targeting of DGCR2 is a promising approach for in vivo detection of stem-cell-derived islets grafts by molecular imaging. The synthesis of [18F]ZDGCR2:AM106 was successfully performed via a pretargeting method to label a site-specific covalently bonded fluorine-18 to the Affibody molecule. However, the rapid washout of [18F]ZDGCR2:AM106 from the stem-cell-derived islets graft indicates that dissociation kinetics can be improved. Further studies using alternative binders of similar classes with improved binding potential are warranted.

7.
EJNMMI Radiopharm Chem ; 8(1): 23, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37733133

RESUMO

BACKGROUND: Platelet-derived growth factor receptor beta (PDGFRß) is a receptor overexpressed on activated hepatic stellate cells (aHSCs). Positron emission tomography (PET) imaging of PDGFRß could potentially allow the quantification of fibrogenesis in fibrotic livers. This study aims to evaluate a fluorine-18 radiolabeled Affibody molecule ([18F]TZ-Z09591) as a PET tracer for imaging liver fibrogenesis. RESULTS: In vitro specificity studies demonstrated that the trans-Cyclooctenes (TCO) conjugated Z09591 Affibody molecule had a picomolar affinity for human PDGFRß. Biodistribution performed on healthy rats showed rapid clearance of [18F]TZ-Z09591 through the kidneys and low liver background uptake. Autoradiography (ARG) studies on fibrotic livers from mice or humans correlated with histopathology results. Ex vivo biodistribution and ARG revealed that [18F]TZ-Z09591 binding in the liver was increased in fibrotic livers (p = 0.02) and corresponded to binding in fibrotic scars. CONCLUSIONS: Our study highlights [18F]TZ-Z09591 as a specific tracer for fibrogenic cells in the fibrotic liver, thus offering the potential to assess fibrogenesis clearly.

8.
Neuroimage ; 277: 120230, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37355199

RESUMO

Synaptic alterations in certain brain structures are related to cognitive decline in neurodegeneration and in aging. Synaptic loss in many neurodegenerative diseases can be visualized by positron emission tomography (PET) imaging of synaptic vesicle glycoprotein 2A (SV2A). However, the use of SV2A PET for studying synaptic changes during aging is not particularly explored. Thus, in the present study, PET ligand [18F]SynVesT-1, which binds to SV2A, was used to investigate synaptic density at different ages in healthy mice. Wild type C57BL/6 mice divided into three age groups (4-5 months (n = 7), 12-14 months (n = 11), 17-19 months (n = 7)) were PET scanned with [18F]SynVesT-1. Brain retention of [18F]SynVesT-1 expressed as the volume of distribution (VIDIF) was calculated using an image-derived input function. Estimates of VIDIF were derived using either a one-tissue compartment model (1TCM), a two-tissue compartment model (2TCM), or the Logan plot with blood input to find the best-fit model for [18F]SynVesT-1. After the PET scans, tissue sections were immunostained for the detection of SV2A and neuronal markers. We found that [18F]SynVesT-1 data acquired 60 min post intravenously injection and analyzed with 1TCM described the brain pharmacokinetics of the radioligand in mice well. [18F]SynVesT-1 brain retention was lower in the oldest group of mice, indicating a decrease in synaptic density in this age group. However, no gradual age-dependent decrease in synaptic density at a region-specific level was observed. Immunostaining indicated that SV2A expression and neuron numbers were similar across all three age groups. In general, these data obtained in healthy aging mice are consistent with previous findings in humans where synaptic density appeared stable during aging up to a certain age, after which a small decrease is observed.


Assuntos
Tomografia por Emissão de Pósitrons , Pirrolidinas , Humanos , Camundongos , Animais , Lactente , Camundongos Endogâmicos C57BL , Tomografia por Emissão de Pósitrons/métodos , Pirrolidinas/farmacocinética , Piridinas/farmacocinética , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo
9.
Pharmaceutics ; 15(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36839820

RESUMO

The progressive loss of beta-cell mass is a hallmark of diabetes and has been suggested as a complementary approach to studying the progression of diabetes in contrast to the beta-cell function. Non-invasive nuclear medicinal imaging techniques such as Positron Emission Tomography using radiation emitting tracers have thus been suggested as more viable methodologies to visualize and quantify the beta-cell mass with sufficient sensitivity. The transmembrane G protein-coupled receptor GPR44 has been identified as a biomarker for monitoring beta-cell mass. MK-7246 is a GPR44 antagonist that selectively binds to GPR44 with high affinity and good pharmacokinetic properties. Here, we present the synthesis of MK-7246, radiolabeled with the positron emitter fluorine-18 for preclinical evaluation using cell lines, mice, rats and human pancreatic cells. Here, we have described a synthesis and radiolabeling method for producing [18F]MK-7246 and its precursor compound. Preclinical assessments demonstrated the strong affinity and selectivity of [18F]MK-7246 towards GPR44. Additionally, [18F]MK-7246 exhibited excellent metabolic stability, a fast clearance profile from blood and tissues, qualifying it as a promising radioactive probe for GPR44-directed PET imaging.

10.
Mol Pharm ; 19(11): 4111-4122, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36201682

RESUMO

Small molecule imaging agents such as [11C]PiB, which bind to the core of insoluble amyloid-ß (Aß) fibrils, are useful tools in Alzheimer's disease (AD) research, diagnostics, and drug development. However, the [11C]PiB PET signal saturates early in the disease progression and does not detect soluble or diffuse Aß pathology which are believed to play important roles in the disease progression. Antibodies, modified into a bispecific format to enter the brain via receptor-mediated transcytosis, could be a suitable alternative because of their diversity and high specificity for their target. However, the circulation time of these antibodies is long, resulting in an extended exposure to radiation and low imaging contrast. Here, we explore two alternative strategies to enhance imaging contrast by increasing clearance of the antibody ligand from blood. The bispecific Aß targeting antibody RmAb158-scFv8D3 and the monospecific RmAb158 were radiolabeled and functionalized with either α-d-mannopyranosylphenyl isothiocyanate (mannose) or with trans-cyclooctene (TCO). While mannose can directly mediate antibody clearance via the liver, TCO-modified antibody clearance was induced by injection of a tetrazine-functionalized, liver-targeting clearing agent (CA). In vivo experiments in wild type and AD transgenic mice demonstrated the ability of both strategies to drastically shorten the circulation time of RmAb158, while they had limited effect on the bispecific variant RmAb158-8D3. Furthermore, single photon emission computed tomography imaging with TCO-[125I]I-RmAb158 in AD mice showed higher contrast 1 day after injection of the tetrazine-functionalized CA. In conclusion, strategies to enhance the clearance of antibody-based imaging ligands could allow imaging at earlier time points and thereby open the possibility to combine antibodies with short-lived radionuclides such as fluorine-18.


Assuntos
Doença de Alzheimer , Imunoconjugados , Animais , Camundongos , Manose , Imunoconjugados/farmacologia , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Camundongos Transgênicos , Amiloide/metabolismo , Anticorpos/metabolismo , Progressão da Doença , Neuroimagem , Tomografia por Emissão de Pósitrons/métodos
11.
Pharmaceutics ; 14(7)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35890306

RESUMO

Immunotherapy targeting aggregated alpha-synuclein (αSYN) is a promising approach for the treatment of Parkinson's disease. However, brain penetration of antibodies is hampered by their large size. Here, RmAbSynO2-scFv8D3, a modified bispecific antibody that targets aggregated αSYN and binds to the transferrin receptor for facilitated brain uptake, was investigated to treat αSYN pathology in transgenic mice. Ex vivo analyses of the blood and brain distribution of RmAbSynO2-scFv8D3 and the unmodified variant RmAbSynO2, as well as in vivo analyses with microdialysis and PET, confirmed fast and efficient brain uptake of the bispecific format. In addition, intravenous administration was shown to be superior to intraperitoneal injections in terms of brain uptake and distribution. Next, aged female αSYN transgenic mice (L61) were administered either RmAbSynO2-scFv8D3, RmAbSynO2, or PBS intravenously three times over five days. Levels of TBS-T soluble aggregated αSYN in the brain following treatment with RmAbSynO2-scFv8D3 were decreased in the cortex and midbrain compared to RmAbSynO2 or PBS controls. Taken together, our results indicate that facilitated brain uptake of αSYN antibodies can improve treatment of αSYN pathology.

12.
Pharm Res ; 39(7): 1481-1496, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35501533

RESUMO

Positron emission tomography (PET), a medical imaging technique allowing for studies of the living human brain, has gained an important role in clinical trials of novel drugs against Alzheimer's disease (AD). For example, PET data contributed to the conditional approval in 2021 of aducanumab, an antibody directed towards amyloid-beta (Aß) aggregates, by showing a dose-dependent reduction in brain amyloid after treatment. In parallel to clinical studies, preclinical studies in animal models of Aß pathology may also benefit from PET as a tool to detect target engagement and treatment effects of anti-Aß drug candidates. PET is associated with a high level of translatability between species as similar, non-invasive protocols allow for longitudinal rather than cross-sectional studies and can be used both in a preclinical and clinical setting. This review focuses on the use of preclinical PET imaging in genetically modified animals that express human Aß, and its present and potential future role in the development of drugs aimed at reducing brain Aß levels as a therapeutic strategy to halt disease progression in AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Desenvolvimento de Medicamentos , Tomografia por Emissão de Pósitrons/métodos
13.
J Nucl Med ; 63(2): 302-309, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34088777

RESUMO

PET imaging of amyloid-ß (Aß) has become an important component of Alzheimer disease diagnosis. 11C-Pittsburgh compound B (11C-PiB) and analogs bind to fibrillar Aß. However, levels of nonfibrillar, soluble, aggregates of Aß appear more dynamic during disease progression and more affected by Aß-reducing treatments. The aim of this study was to compare an antibody-based PET ligand targeting nonfibrillar Aß with 11C-PiB after ß-secretase (BACE-1) inhibition in 2 Alzheimer disease mouse models at an advanced stage of Aß pathology. Methods: Transgenic ArcSwe mice (16 mo old) were treated with the BACE-1 inhibitor NB-360 for 2 mo, whereas another group was kept as controls. A third group was analyzed at the age of 16 mo as a baseline. Mice were PET-scanned with 11C-PiB to measure Aß plaque load followed by a scan with the bispecific radioligand 124I-RmAb158-scFv8D3 to investigate nonfibrillar aggregates of Aß. The same study design was then applied to another mouse model, AppNL-G-F In this case, NB-360 treatment was initiated at the age of 8 mo and animals were scanned with 11C-PiB-PET and 125I-RmAb158-scFv8D3 SPECT. Brain tissue was isolated after scanning, and Aß levels were assessed. Results: 124I-RmAb158-scFv8D3 concentrations measured with PET in hippocampus and thalamus of NB-360-treated ArcSwe mice were similar to those observed in baseline animals and significantly lower than concentrations observed in same-age untreated controls. Reduced 125I-RmAb158-scFv8D3 retention was also observed with SPECT in hippocampus, cortex, and cerebellum of NB-360-treated AppNL-G-F mice. Radioligand in vivo concentrations corresponded to postmortem brain tissue analysis of soluble Aß aggregates. For both models, mice treated with NB-360 did not display a reduced 11C-PiB signal compared with untreated controls, and further, both NB-360 and control mice tended, although not reaching significance, to show higher 11C-PiB signal than the baseline groups. Conclusion: This study demonstrated the ability of an antibody-based radioligand to detect changes in brain Aß levels after anti-Aß therapy in ArcSwe and AppNL-G-F mice with pronounced Aß pathology. In contrast, the decreased Aß levels could not be quantified with 11C-PiB PET, suggesting that these ligands detect different pools of Aß.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Compostos de Anilina/metabolismo , Animais , Anticorpos/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Radioisótopos do Iodo , Camundongos , Camundongos Transgênicos , Placa Amiloide/metabolismo , Tomografia por Emissão de Pósitrons/métodos
14.
Elife ; 102021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34951590

RESUMO

Transition metals, such as zinc, are essential micronutrients in all organisms, but also highly toxic in excessive amounts. Heavy-metal transporting P-type (PIB) ATPases are crucial for homeostasis, conferring cellular detoxification and redistribution through transport of these ions across cellular membranes. No structural information is available for the PIB-4-ATPases, the subclass with the broadest cargo scope, and hence even their topology remains elusive. Here, we present structures and complementary functional analyses of an archetypal PIB-4-ATPase, sCoaT from Sulfitobacter sp. NAS14-1. The data disclose the architecture, devoid of classical so-called heavy-metal-binding domains (HMBDs), and provide fundamentally new insights into the mechanism and diversity of heavy-metal transporters. We reveal several novel P-type ATPase features, including a dual role in heavy-metal release and as an internal counter ion of an invariant histidine. We also establish that the turnover of PIB-ATPases is potassium independent, contrasting to many other P-type ATPases. Combined with new inhibitory compounds, our results open up for efforts in for example drug discovery, since PIB-4-ATPases function as virulence factors in many pathogens.


Heavy metals such as zinc and cobalt are toxic at high levels, yet most organisms need tiny amounts for their cells to work properly. As a result, proteins studded through the cell membrane act as gatekeepers to finetune import and export. These proteins are central to health and disease; their defect can lead to fatal illnesses in humans, and they also help bacteria infect other organisms. Despite their importance, little is known about some of these metal-export proteins. This is particularly the case for PIB-4-ATPases, a subclass found in plants and bacteria and which includes, for example, a metal transporter required for bacteria to cause tuberculosis. Intricate knowledge of the three-dimensional structure of these proteins would help to understand how they select metals, shuttle the compounds in and out of cells, and are controlled by other cellular processes. To reveal this three-dimensional organisation, Grønberg et al. used X-ray diffraction, where high-energy radiation is passed through crystals of protein to reveal the positions of atoms. They focused on a type of PIB-4-ATPases found in bacteria as an example. The work showed that the protein does not contain the metal-binding regions seen in other classes of metal exporters; however, it sports unique features that are crucial for metal transport such as an adapted pathway for the transport of zinc and cobalt across the membrane. In addition, Grønberg et al. tested thousands of compounds to see if they could block the activity of the protein, identifying two that could kill bacteria. This better understanding of how PIB-4-ATPases work could help to engineer plants capable of removing heavy metals from contaminated soils, as well as uncover new compounds to be used as antibiotics.


Assuntos
Íons/metabolismo , Metais Pesados/metabolismo , ATPases do Tipo-P/química , ATPases do Tipo-P/metabolismo , Rhodobacteraceae/enzimologia , Sítios de Ligação , Transporte Biológico , Proteínas de Transporte de Cátions/metabolismo , Modelos Moleculares , ATPases do Tipo-P/classificação , Conformação Proteica , Rhodobacteraceae/classificação , Zinco/metabolismo
15.
Sci Rep ; 11(1): 24466, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34963683

RESUMO

Biomarkers for the measurement of islets of Langerhans could help elucidate the etiology of diabetes. Synaptic vesicle glycoprotein 2 A (SV2A) is a potential marker reported to be localized in the endocrine pancreas. [11C]UCB-J is a novel positron emission tomography (PET) radiotracer that binds to SV2A and was previously evaluated as a synaptic marker in the central nervous system. Here, we evaluated whether [11C]UCB-J could be utilized as a PET tracer for the islets of Langerhans in the pancreas by targeting SV2A. The mRNA transcription of SV2A was evaluated in human isolated islets of Langerhans and exocrine tissue. In vitro autoradiography was performed on pancreas and brain sections from rats and pigs, and consecutive sections were immunostained for insulin. Sprague-Dawley rats were examined with PET-MRI and ex vivo autoradiography at baseline and with administration of levetiracetam (LEV). Similarly, pigs were examined with dynamic PET-CT over the pancreas and brain after administration of [11C]UCB-J at baseline and after pretreatment with LEV. In vivo radioligand binding was assessed using a one-compartment tissue model. The mRNA expression of SV2A was nearly 7 times higher in endocrine tissue than in exocrine tissue (p < 0.01). In vitro autoradiography displayed focal binding of [11C]UCB-J in the pancreas of rats and pigs, but the binding pattern did not overlap with the insulin-positive areas or with ex vivo autoradiography. In rats, pancreas binding was higher than that in negative control tissues but could not be blocked by LEV. In pigs, the pancreas and brain exhibited accumulation of [11C]UCB-J above the negative control tissue spleen. While brain binding could be blocked by pretreatment with LEV, a similar effect was not observed in the pancreas. Transcription data indicate SV2A to be a valid target for imaging islets of Langerhans, but [11C]UCB-J does not appear to have sufficient sensitivity for this application.


Assuntos
Ilhotas Pancreáticas/diagnóstico por imagem , Glicoproteínas de Membrana/análise , Proteínas do Tecido Nervoso/análise , Tomografia por Emissão de Pósitrons , Piridinas/análise , Pirrolidinonas/análise , Animais , Feminino , Masculino , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos/análise , Ratos Sprague-Dawley , Suínos
16.
J Labelled Comp Radiopharm ; 64(11): 447-455, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34250640

RESUMO

The Suzuki-type cross coupling reaction is a palladium-mediated multistep reaction that has been used to synthesize several 11 C-labeled tracers for PET. However, the impact of the selected organoborane reagent and reaction medium on the radiochemical yield (RCY) has not been thoroughly investigated. To bridge this gap, we studied the synthesis of 1-[11 C]methylnaphthalene using four different organoborane precursors in reactions performed in DMF/water and THF/water. In the synthesis of 1-[11 C]methylnaphthalene, the best radiochemical yields (RCYs), approximately 50%, were obtained with boronic acid and pinacol ester precursors, whereas less than 4% RCY was obtained when performing the reaction with the N-methylimidodiacetic acid boronic ester (MIDA ester) precursor. 1-[11 C]methylnaphthalene was obtained in higher yields in almost all syntheses performed in THF/water as compared to DMF/water. This observation was in line with previously reported results for [11 C]UCB-J, a tracer for the synaptic vesicle glycoprotein 2A (SV2A) receptor, that also was obtained in higher RCY when synthesized in THF/water. The same trend was observed with [11 C]cetrozole, where the RCY was more than doubled in THF/water compared to the previously published synthesis performed in DMF. These results suggest that THF/water could be the preferred reaction medium when producing PET tracers via the Suzuki-type coupling reaction.


Assuntos
Compostos Radiofarmacêuticos
17.
Neuroimage ; 239: 118302, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34174391

RESUMO

The positron emission tomography (PET) radioligand [11C]UCB-J binds to synaptic vesicle protein 2A (SV2A) and is used to investigate synaptic density in the living brain. Clinical studies have indicated reduced [11C]UCB-J binding in Alzheimer's disease (AD) and Parkinson's disease (PD) brains compared to healthy controls. Still, it is unknown whether [11C]UCB-J PET can visualise synaptic loss in mouse models of these disorders. Such models are essential for understanding disease pathology and for evaluating the effects of novel disease-modifying drug candidates. In the present study, synaptic density in transgenic models of AD (ArcSwe) and PD (L61) was studied using [11C]UCB-J PET. Data were acquired during 60 min after injection, and time-activity curves (TACs) in different brain regions and the left ventricle of the heart were generated based on the dynamic PET images. The [11C]UCB-J brain concentrations were expressed as standardised uptake value (SUV) over time. The area under the SUV curve (AUC), the ratio of AUC in the brain to that in the heart (AUCbrain/blood), and the volume of distribution (VT) obtained by kinetic modelling using the heart TAC as input were compared between transgenic and age-matched wild type (WT) mice. The L61 mice displayed 11-13% lower AUCbrain/blood ratio and brain VT generated by kinetic modeling compared to the control WT mice. In general, also transgenic ArcSwe mice tended to show lower [11C]UCB-J brain exposure than age-matched WT controls, but variation within the different animal groups was high. Older WT mice (18-20 months) showed lower [11C]UCB-J brain exposure than younger WT mice (8-9 months). Together, these data imply that [11C]UCB-J PET reflects synaptic density in mouse models of neurodegeneration and that inter-subject variation is large. In addition, the study suggested that model-independent AUCbrain/blood ratio can be used to evaluate [11C]UCB-J binding as an alternative to full pharmacokinetic modelling.


Assuntos
Peptídeos beta-Amiloides/análise , Encéfalo/diagnóstico por imagem , Radioisótopos de Carbono/farmacocinética , Modelos Animais de Doenças , Glicoproteínas de Membrana/análise , Proteínas do Tecido Nervoso/análise , Fragmentos de Peptídeos/análise , Tomografia por Emissão de Pósitrons/métodos , Piridinas/farmacocinética , Pirrolidinonas/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Vesículas Sinápticas/ultraestrutura , Sinucleinopatias/diagnóstico por imagem , Envelhecimento , Doença de Alzheimer , Peptídeos beta-Amiloides/genética , Animais , Área Sob a Curva , Encéfalo/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Especificidade de Órgãos , Doença de Parkinson , Fragmentos de Peptídeos/genética
18.
Biomedicines ; 9(4)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923731

RESUMO

A validated imaging marker for beta-cell mass would improve understanding of diabetes etiology and enable new strategies in therapy development. We previously identified the membrane-spanning protein GPR44 as highly expressed and specific to the beta cells of the pancreas. The selective GPR44 antagonist MK-7246 was radiolabeled with carbon-11 and the resulting positron-emission tomography (PET) tracer [11C]MK-7246 was evaluated in a pig model and in vitro cell lines. The [11C]MK-7246 compound demonstrated mainly hepatobiliary excretion with a clearly defined pancreas, no spillover from adjacent tissues, and pancreatic binding similar in magnitude to the previously evaluated GPR44 radioligand [11C]AZ12204657. The binding could be blocked by preadministration of nonradioactive MK-7246, indicating a receptor-binding mechanism. [11C]MK-7246 showed strong potential as a PET ligand candidate for visualization of beta-cell mass (BCM) and clinical translation of this methodology is ongoing.

19.
Nucl Med Biol ; 92: 115-137, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32147168

RESUMO

The prospects for using carbon-11 labelled compounds in molecular imaging has improved with the development of diverse synthesis methods, including 11C-carbonylations and refined techniques to handle [11C]carbon monoxide at a nanomole scale. Facilitating biological research and molecular imaging was the driving force when [11C]carbon monoxide was used in the first in vivo application with carbon-11 in human (1945) and when [11C]carbon monoxide was used for the first time as a chemical reagent in the synthesis of [11C]phosgene (1978). This review examines a rich plethora of labelled compounds synthesized from [11C]carbon monoxide, their chemistry and use in molecular imaging. While the strong development of the 11C-carbonylation chemistry has expanded the carbon-11 domain considerably, it could be argued that the number of 11C-carbonyl compounds entering biological investigations should be higher. The reason for this may partly be the lack of commercially available synthesis instruments designed for 11C-carbonylations. But as this review shows, novel and greatly simplified methods to handle [11C]carbon monoxide have been developed. The next important challenge is to make full use of these technologies and synthesis methods in PET research. When there is a PET-tracer that meets a more general need, the incentive to implement 11C-carbonylation protocols will increase.


Assuntos
Monóxido de Carbono/química , Radioisótopos de Carbono/química , Compostos Radiofarmacêuticos/química , Animais , Humanos , Tomografia por Emissão de Pósitrons , Radioquímica
20.
Biomaterials ; 267: 120493, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33202331

RESUMO

An increased resistance to surgical site infections has been associated with surgical meshes composed of naturally occurring materials, including poly-4-hydroxybutrate (4HB). 4HB is a naturally occurring short-chain fatty acid that has been shown to promote endogenous expression of the Cramp gene coding for the antimicrobial peptide (AMP) cathelicidin LL-37 in murine bone marrow-derived macrophages. The molecular pathways involved in the 4HB-induced cathelicidin LL-37 expression have not yet been identified. The present study showed that transcriptional activation of the Cramp gene by 4HB is independent of inhibition of histone deacetylase (HDAC) activity, and that upregulation of Cramp is modulated by the G-protein coupled receptor GPR109A. Furthermore, an intracellular signaling cascade that promotes the activation of the MAP kinases, p38 and JNK, and a subsequent NF-κB phosphorylation downstream from p38 is essential for the AMP transcriptional response in 4HB-stimulated macrophages. The findings provide a solid scientific basis and rationale for the decreased incidence of surgical site infections with the use of this type of surgical meshes. Further clinical significance is found in the fact that the 4HB activated molecular pathway includes common targets of frequently used nonsteroidal anti-inflammatory drugs (NSAIDs) and other FDA approved drugs recognizing G-protein coupled receptors.


Assuntos
Telas Cirúrgicas , Infecção da Ferida Cirúrgica , Animais , Hidroxibutiratos , Camundongos , Proteínas Quinases Ativadas por Mitógeno , NF-kappa B , Proteínas Quinases p38 Ativadas por Mitógeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...