Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 177: 117016, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943992

RESUMO

Idiopathic pulmonary fibrosis is an aging-related, chronic lung disease, with unclear pathogenesis and no effective treatment. One of the triggering factors in cell aging is oxidative stress and it is known to have a role in idiopathic pulmonary fibrosis. In this paper, the protective effect of the E-CG-01 (3,4-lacto-cycloastragenol) molecule in terms of its antioxidant properties was evaluated in the bleomycin induced mice lung fibrosis model. Bleomycin sulfate was administered as a single dose (2.5 U/kg body weight) intratracheally to induce lung fibrosis. E-CG-01 was administered intraperitoneally in three different doses (2 mg/kg/day, 6 mg/kg/day, and 10 mg/kg/day) for 14 days, starting three days before the bleomycin administration. Fibrosis was examined by Hematoxylin-Eosin, Masson Trichrome, and immunohistochemical staining for TGF-beta1, Type I collagen Ki-67, and gama-H2AX markers. Activity analysis of catalase and Superoxide dismutase enzymes, measurement of total oxidant, total glutathione, and Malondialdehyde levels. In histological analysis, it was determined that all three different doses of the molecule provided a prophylactic effect against the progression of fibrosis compared to the bleomycin control group. However, it was observed that only the molecule applied in the high dose decreased the total oxidant stress level. Lung weight ratio increased in the BLM group but significantly reduced with high-dose E-CG-01. E-CG-01 at all doses reduced collagen deposition, TGF-ß expression, and Ki-67 expression compared to the BLM group. Intermediate and high doses of E-CG-01 also significantly reduced alveolar wall thickness and edema formation. These findings suggest that E-CG-01 has potential therapeutic effects in mitigating lung fibrosis through its antioxidant properties.

2.
Pathol Res Pract ; 250: 154829, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37748211

RESUMO

Melanoma is an aggressive tumor with a poor prognosis that worsens in the metastatic phase. Distruptions of epigenetic mechanisms is known to effect cancer stem cells (CSCs) activity. Malignant melanoma (MM) progression may be promoted by changes in the genetic structure of CSC. Thus, treatments that target epigenetic modifications could be a promising weapon, especially in melanoma. Here, we compared p300, HDAC9, and F-actin proteins in melanoma CSCs (CD133+), non-CSCs (CD133-) and CHL-1 cell line, as well as cell migration and division rates. At 4 and 6 h, P300 protein levels in CHL-1 and CD133 + were remarkably similar, and the CD133- showed increases in expression levels as the incubation period lengthened. HDAC9 protein intensity decreased in CHL-1, increased in the CD133-, and remained relatively unchanged in the CD133+ as the incubation period lengthened. The mean value of F-actin expression level increased in all cell group with time, when the highest increase observed in CHL-1. In conclusion, our studies contribute to the management of metastatic diseases in the future and offer new insight into the molecular basis of the initiation and progression of MM.

3.
ACS Omega ; 8(33): 30145-30157, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37636966

RESUMO

Malignant tumors are formed by diverse groups of cancer cells. Cancer stem cells (CSCs) are a subpopulation of heterogeneous cells identified in tumors that have the ability to self-renew and differentiate. Colorectal cancer (CRC), the third most frequent malignant tumor, is progressively being supported by evidence suggesting that CSCs are crucial in cancer development. We aim to identify molecular differences between CRC cells and CRC CSCs, as well as the effects of those differences on cell behavior in terms of migration, EMT, pluripotency, morphology, cell cycle/control, and epigenetic characteristics. The HT-29 cell line (human colorectal adenocarcinoma) and HT-29 CSCs (HT-29 CD133+/CD44+ cells) were cultured for 72 h. The levels of E-cadherin, KLF4, p53, p21, p16, cyclin D2, HDAC9, and P300 protein expression were determined using immunohistochemistry staining. The migration of cells was assessed by employing the scratch assay technique. Additionally, the scanning electron microscopy method was used to examine the morphological features of the cells, and their peripheral/central elemental ratios were compared with the help of EDS. Furthermore, a Muse cell cycle kit was utilized to determine the cell cycle analysis. The HT-29 CSC group exhibited high levels of expression for E-cadherin, p53, p21, p16, cyclin D2, HDAC9, and P300, whereas KLF4 was found to be high in the HT-29. The two groups did not exhibit any statistically significant differences in the percentages of cell cycle phases. The identification of specific CSC characteristics will allow for earlier cancer detection and the development of more effective precision oncology options.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...