Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Haematol ; 202(1): 11-12, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36994809

RESUMO

Esperanza-Cebollada E., et al. found a group of 24 microRNAs, to be differentially expressed between two groups of paediatric acute myeloid leukaemia (AML) cases with distinct outcomes. The main target of this microRNA signature is SOCS2, a gene that controls stemness. The results of this study may open doors for further investigation of the role for microRNAs in poor prognostic paediatric AML. Commentary on: Esperanza-Cebollada et al. A miRNA signature related to stemness identifies high-risk patients in paediatric acute myeloid leukaemia. Br J Haematol 2023;202:96-110.


Assuntos
Leucemia Mieloide Aguda , MicroRNAs , Humanos , Criança , MicroRNAs/genética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Prognóstico
2.
Biomedicines ; 10(6)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35740251

RESUMO

Small nucleolar RNAs (snoRNAs) are responsible for post-transcriptional modification of ribosomal RNAs, transfer RNAs and small nuclear RNAs, and thereby have important regulatory functions in mRNA splicing and protein translation. Several studies have shown that snoRNAs are dysregulated in human cancer and may play a role in cancer initiation and progression. In this review, we focus on the role of snoRNAs in normal and malignant B-cell development. SnoRNA activity appears to be essential for normal B-cell differentiation and dysregulated expression of sno-RNAs is determined in B-cell acute lymphoblastic leukemia, chronic lymphocytic leukemia, B-cell non-Hodgkin's lymphoma, and plasma cell neoplasms. SnoRNA expression is associated with cytogenetic/molecular subgroups and clinical outcome in patients with B-cell malignancies. Translocations involving snoRNAs have been described as well. Here, we discuss the different aspects of snoRNAs in B-cell malignancies and report on their role in oncogenic transformation, which may be useful for the development of novel diagnostic biomarkers or therapeutic targets.

3.
Cells ; 11(5)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35269391

RESUMO

Mounting data show that MIR139 is commonly silenced in solid cancer and hematological malignancies. MIR139 acts as a critical tumor suppressor by tuning the cellular response to different types of stress, including DNA damage, and by repressing oncogenic signaling pathways. Recently, novel insights into the mechanism of MIR139 silencing in tumor cells have been described. These include epigenetic silencing, inhibition of POL-II transcriptional activity on gene regulatory elements, enhanced expression of competing RNAs and post-transcriptional regulation by the microprocessor complex. Some of these MIR139-silencing mechanisms have been demonstrated in different types of cancer, suggesting that these are more general oncogenic events. Reactivation of MIR139 expression in tumor cells causes inhibition of tumor cell expansion and induction of cell death by the repression of oncogenic mRNA targets. In this review, we discuss the different aspects of MIR139 as a tumor suppressor gene and give an overview on different transcriptional mechanisms regulating MIR139 in oncogenic stress and across different types of cancer. The novel insights into the expression regulation and the tumor-suppressing activities of MIR139 may pave the way to new treatment options for cancer.


Assuntos
MicroRNAs , Neoplasias , Carcinogênese/genética , Proliferação de Células/genética , Genes Supressores de Tumor , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Neoplasias/patologia
4.
J Immunol ; 208(3): 603-617, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35022277

RESUMO

MicroRNAs (miRNAs/miRs) are small, endogenous noncoding RNAs that are important post-transcriptional regulators with clear roles in the development of the immune system and immune responses. Using miRNA microarray profiling, we characterized the expression profile of naive and in vivo generated murine effector antiviral CD8+ T cells. We observed that out of 362 measurable mature miRNAs, 120 were differentially expressed by at least 2-fold in influenza-specific effector CD8+ CTLs compared with naive CD8+ T cells. One miRNA found to be highly downregulated on both strands in effector CTLs was miR-139. Because previous studies have indicated a role for miR-139-mediated regulation of CTL effector responses, we hypothesized that deletion of miR-139 would enhance antiviral CTL responses during influenza virus infection. We generated miR-139-/- mice or overexpressed miR-139 in T cells to assess the functional contribution of miR-139 expression in CD8+ T cell responses. Our study demonstrates that the development of naive T cells and generation or differentiation of effector or memory CD8+ T cell responses to influenza virus infection are not impacted by miR-139 deficiency or overexpression; yet, miR-139-/- CD8+ T cells are outcompeted by wild-type CD8+ T cells in a competition setting and demonstrate reduced responses to Listeria monocytogenes Using an in vitro model of T cell exhaustion, we confirmed that miR-139 expression similarly does not impact the development of T cell exhaustion. We conclude that despite significant downregulation of miR-139 following in vivo and in vitro activation, miR-139 expression is dispensable for influenza-specific CTL responses.


Assuntos
Vírus da Influenza A/imunologia , Listeria monocytogenes/imunologia , MicroRNAs/genética , Infecções por Orthomyxoviridae/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Regulação para Baixo/genética , Feminino , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/imunologia
5.
Leukemia ; 36(3): 687-700, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34741119

RESUMO

MIR139 is a tumor suppressor and is commonly silenced in acute myeloid leukemia (AML). However, the tumor-suppressing activities of miR-139 and molecular mechanisms of MIR139-silencing remain largely unknown. Here, we studied the poorly prognostic MLL-AF9 fusion protein-expressing AML. We show that MLL-AF9 expression in hematopoietic precursors caused epigenetic silencing of MIR139, whereas overexpression of MIR139 inhibited in vitro and in vivo AML outgrowth. We identified novel miR-139 targets that mediate the tumor-suppressing activities of miR-139 in MLL-AF9 AML. We revealed that two enhancer regions control MIR139 expression and found that the polycomb repressive complex 2 (PRC2) downstream of MLL-AF9 epigenetically silenced MIR139 in AML. Finally, a genome-wide CRISPR-Cas9 knockout screen revealed RNA Polymerase 2 Subunit M (POLR2M) as a novel MIR139-regulatory factor. Our findings elucidate the molecular control of tumor suppressor MIR139 and reveal a role for POLR2M in the MIR139-silencing mechanism, downstream of MLL-AF9 and PRC2 in AML. In addition, we confirmed these findings in human AML cell lines with different oncogenic aberrations, suggesting that this is a more common oncogenic mechanism in AML. Our results may pave the way for new targeted therapy in AML.


Assuntos
Leucemia Mieloide Aguda/genética , MicroRNAs/genética , RNA Polimerase II/genética , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Epigênese Genética , Regulação Leucêmica da Expressão Gênica , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Fusão Oncogênica/genética
6.
Haematologica ; 107(1): 143-153, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33596640

RESUMO

T-cell prolymphocytic leukemia (T-PLL) is mostly characterized by aberrant expansion of small- to medium-sized prolymphocytes with a mature post-thymic phenotype, high aggressiveness of the disease and poor prognosis. However, T-PLL is more heterogeneous with a wide range of clinical, morphological, and molecular features, which occasionally impedes the diagnosis. We hypothesized that T-PLL consists of phenotypic and/or genotypic subgroups that may explain the heterogeneity of the disease. Multi-dimensional immuno-phenotyping and gene expression profiling did not reveal clear T-PLL subgroups, and no clear T-cell receptor a or ß CDR3 skewing was observed between different T-PLL cases. We revealed that the expression of microRNA (miRNA) is aberrant and often heterogeneous in T-PLL. We identified 35 miRNA that were aberrantly expressed in T-PLL with miR-200c/141 as the most differentially expressed cluster. High miR- 200c/141 and miR-181a/181b expression was significantly correlated with increased white blood cell counts and poor survival. Furthermore, we found that overexpression of miR-200c/141 correlated with downregulation of their targets ZEB2 and TGFßR3 and aberrant TGFß1- induced phosphorylated SMAD2 (p-SMAD2) and p-SMAD3, indicating that the TGFß pathway is affected in T-PLL. Our results thus highlight the potential role for aberrantly expressed oncogenic miRNA in T-PLL and pave the way for new therapeutic targets in this disease.


Assuntos
Leucemia Prolinfocítica de Células T , MicroRNAs , Perfilação da Expressão Gênica , Humanos , Leucemia Prolinfocítica de Células T/diagnóstico , Leucemia Prolinfocítica de Células T/genética , Leucemia Prolinfocítica de Células T/terapia , Linfócitos , MicroRNAs/genética , Fator de Crescimento Transformador beta , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética
7.
Leukemia ; 36(4): 983-993, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34873301

RESUMO

T-LGL cells arise as a consequence of chronic antigenic stimulation and inflammation and thrive because of constitutive activation of the STAT3 and ERK pathway. Notably, in 40% of patients, constitutive STAT3 activation is due to STAT3 activating mutations, whereas in 60% this is unknown. As miRNAs are amongst the most potent regulators in health and disease, we hypothesized that aberrant miRNA expression could contribute to dysregulation of these pathways. miRNA sequencing in T-LGL leukemia cases and aged-matched healthy control TEMRA cells revealed overexpression of miR-181a. Furthermore, geneset enrichment analysis (GSEA) of downregulated targets of miR-181a implicated involvement in regulating STAT3 and ERK1/2 pathways. Flow cytometric analyses showed increased SOCS3+ and DUSP6+ T-LGL cells upon miR-181a inhibition. In addition, miR-181a-transfected human CD8+ T cells showed increased basal STAT3 and ERK1/2 phosphorylation. By using TL1, a human T-LGL cell line, we could show that miR-181a is an actor in T-LGL leukemia, driving STAT3 activation by SOCS3 inhibition and ERK1/2 phosphorylation by DUSP6 inhibition and verified this mechanism in an independent cell line. In addition, miR-181a inhibition resulted in a higher sensitivity to FAS-mediated apoptosis. Collectively, our data show that miR-181a could be the missing link to explain why STAT3-unmutated patients show hyperactive STAT3.


Assuntos
Leucemia Linfocítica Granular Grande , MicroRNAs , Fator de Transcrição STAT3 , Linfócitos T CD8-Positivos , Humanos , Leucemia Linfocítica Granular Grande/genética , MicroRNAs/genética , Receptores de Antígenos de Linfócitos T alfa-beta , Fator de Transcrição STAT3/genética
8.
Front Bioeng Biotechnol ; 9: 640419, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718342

RESUMO

Recently, we and others have illustrated that extracellular vesicles (EVs) have the potential to support hematopoietic stem and progenitor cell (HSPC) expansion; however, the mechanism and processes responsible for the intercellular communication by EVs are still unknown. In the current study, we investigate whether primary human bone marrow derived mesenchymal stromal cells (BMSC) EVs isolated from two different origins, fetal (fEV) and adult (aEV) tissue, can increase the relative low number of HSPCs found in umbilical cord blood (UCB) and which EV-derived components are responsible for ex vivo HSPC expansion. Interestingly, aEVs and to a lesser extent fEVs, showed supportive ex vivo expansion capacity of UCB-HSPCs. Taking advantage of the two BMSC sources with different supportive effects, we analyzed the EV cargo and investigated how gene expression is modulated in HSPCs after incubation with aEVs and fEVs. Proteomics analyses of the protein cargo composition of the supportive aEV vs. the less-supportive fEV identified 90% of the Top100 exosome proteins present in the ExoCarta database. Gene Ontology (GO) analyses illustrated that the proteins overrepresented in aEVs were annotated to oxidation-reduction process, mitochondrial ATP synthesis coupled proton transport, or protein folding. In contrast, the proteins overrepresented in fEVs were annotated to extracellular matrix organization positive regulation of cell migration or transforming growth factor beta receptor (TGFBR) signaling pathway. Small RNA sequencing identified different molecular signatures between aEVs and fEVs. Interestingly, the microRNA cluster miR-99b/let-7e/miR-125a, previously identified to increase the number of HSPCs by targeting multiple pro-apoptotic genes, was highly and significantly enriched in aEVs. Although we identified significant differences in the supportive effects of aEVs and fEVs, RNAseq analyses of the 24 h treated HSPCs indicated that a limited set of genes was differentially regulated when compared to cells that were treated with cytokines only. Together, our study provides novel insights into the complex biological role of EVs and illustrates that aEVs and fEVs differentially support ex vivo expansion capacity of UCB-HSPCs. Together opening new means for the application of EVs in the discovery of therapeutics for more efficient ex vivo HSPC expansion.

9.
PLoS Pathog ; 16(6): e1008555, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32579593

RESUMO

Exhaustion is a dysfunctional state of cytotoxic CD8+ T cells (CTL) observed in chronic infection and cancer. Current in vivo models of CTL exhaustion using chronic viral infections or cancer yield very few exhausted CTL, limiting the analysis that can be done on these cells. Establishing an in vitro system that rapidly induces CTL exhaustion would therefore greatly facilitate the study of this phenotype, identify the truly exhaustion-associated changes and allow the testing of novel approaches to reverse or prevent exhaustion. Here we show that repeat stimulation of purified TCR transgenic OT-I CTL with their specific peptide induces all the functional (reduced cytokine production and polyfunctionality, decreased in vivo expansion capacity) and phenotypic (increased inhibitory receptors expression and transcription factor changes) characteristics of exhaustion. Importantly, in vitro exhausted cells shared the transcriptomic characteristics of the gold standard of exhaustion, CTL from LCMV cl13 infections. Gene expression of both in vitro and in vivo exhausted CTL was distinct from T cell anergy. Using this system, we show that Tcf7 promoter DNA methylation contributes to TCF1 downregulation in exhausted CTL. Thus this novel in vitro system can be used to identify genes and signaling pathways involved in exhaustion and will facilitate the screening of reagents that prevent/reverse CTL exhaustion.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Metilação de DNA/imunologia , Fator 1-alfa Nuclear de Hepatócito/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Regiões Promotoras Genéticas/imunologia , Animais , Linfócitos T CD8-Positivos/patologia , Fator 1-alfa Nuclear de Hepatócito/genética , Coriomeningite Linfocítica/genética , Coriomeningite Linfocítica/patologia , Vírus da Coriomeningite Linfocítica/genética , Camundongos , Camundongos Transgênicos , Transdução de Sinais/genética , Transdução de Sinais/imunologia
10.
FASEB J ; 34(4): 5435-5452, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32086861

RESUMO

Osteolineage cell-derived extracellular vesicles (EVs) play a regulatory role in hematopoiesis and have been shown to promote the ex vivo expansion of human hematopoietic stem and progenitor cells (HSPCs). Here, we demonstrate that EVs from different human osteolineage sources do not have the same HSPC expansion promoting potential. Comparison of stimulatory and non-stimulatory osteolineage EVs by next-generation sequencing and mass spectrometry analyses revealed distinct microRNA and protein signatures identifying EV-derived candidate regulators of ex vivo HSPC expansion. Accordingly, the treatment of umbilical cord blood-derived CD34+ HSPCs with stimulatory EVs-altered HSPC transcriptome, including genes with known roles in cell proliferation. An integrative bioinformatics approach, which connects the HSPC gene expression data with the candidate cargo in stimulatory EVs, delineated the potentially targeted biological functions and pathways during hematopoietic cell expansion and development. In conclusion, our study gives novel insights into the complex biological role of EVs in osteolineage cell-HSPC crosstalk and promotes the utility of EVs and their cargo as therapeutic agents in regenerative medicine.


Assuntos
Diferenciação Celular , Linhagem da Célula , Vesículas Extracelulares/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/citologia , Osteoblastos/citologia , Antígenos CD34/metabolismo , Proliferação de Células , Células Cultivadas , Células-Tronco Hematopoéticas/metabolismo , Humanos , Osteoblastos/metabolismo , Transcriptoma
11.
Cells ; 8(11)2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31752361

RESUMO

MicroRNAs (miRNAs) are critical regulators of gene expression. As miRNAs are frequently deregulated in many human diseases, including cancer and immunological disorders, it is important to understand their biological functions. Typically, miRNA-encoding genes are transcribed by RNA Polymerase II and generate primary transcripts that are processed by RNase III-endonucleases DROSHA and DICER into small RNAs of approximately 21 nucleotides. All miRNAs are loaded into Argonaute proteins in the RNA-induced silencing complex (RISC) and act as post-transcriptional regulators by binding to the 3'- untranslated region (UTR) of mRNAs. This seed-dependent miRNA binding inhibits the translation and/or promotes the degradation of mRNA targets. Surprisingly, recent data presents evidence for a target-mediated decay mechanism that controls the level of specific miRNAs. In addition, several non-canonical miRNA-containing genes have been recently described and unexpected functions of miRNAs have been identified. For instance, several miRNAs are located in the nucleus, where they are involved in the transcriptional activation or silencing of target genes. These epigenetic modifiers are recruited by RISC and guided by miRNAs to specific loci in the genome. Here, we will review non-canonical aspects of miRNA biology, including novel regulators of miRNA expression and functions of miRNAs in the nucleus.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Interferência de RNA , RNA Mensageiro/genética , Animais , Proteínas Argonautas , Núcleo Celular/genética , Núcleo Celular/metabolismo , Epigênese Genética , Inativação Gênica , Humanos , MicroRNAs/metabolismo , Modelos Biológicos , Ligação Proteica , RNA Mensageiro/metabolismo , Transcrição Gênica
12.
Hum Mutat ; 40(11): 2131-2145, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31322790

RESUMO

Noncoding RNAs have been widely recognized as essential mediators of gene regulation. However, in contrast to protein-coding genes, much less is known about the influence of noncoding RNAs on human diseases. Here we examined the association of genetic variants located in primary microRNA sequences and long noncoding RNAs (lncRNAs) with Alzheimer disease (AD) by leveraging data from the largest genome-wide association meta-analysis of late-onset AD. Variants annotated to 5 miRNAs and 10 lncRNAs (in seven distinct loci) exceeded the Bonferroni-corrected significance threshold (p < 1.02 × 10-6 ). Among these, a leading variant (rs2526377:A>G) at the 17q22 locus annotated to two noncoding RNAs (MIR142 and BZRAP1-AS) was significantly associated with a reduced risk of AD and fulfilled predefined criteria for being a functional variant. Our functional genomic analyses revealed that rs2526377 affects the promoter activity and decreases the expression of miR-142. Moreover, differential expression analysis by RNA-Seq in human iPSC-derived neural progenitor cells and the hippocampus of miR-142 knockout mice demonstrated multiple target genes of miR-142 in the brain that are likely to be involved in the inflammatory and neurodegenerative manifestations of AD. These include TGFBR1 and PICALM, of which their derepression in the brain due to reduced expression levels of miR-142-3p may reduce the risk of AD.


Assuntos
Doença de Alzheimer/genética , Predisposição Genética para Doença , Variação Genética , MicroRNAs/genética , Regiões Promotoras Genéticas , Alelos , Doença de Alzheimer/metabolismo , Animais , Linhagem Celular , Mapeamento Cromossômico , Biologia Computacional/métodos , Modelos Animais de Doenças , Regulação da Expressão Gênica , Estudos de Associação Genética , Estudo de Associação Genômica Ampla , Hipocampo/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Polimorfismo de Nucleotídeo Único , Interferência de RNA , RNA não Traduzido
13.
Cancer Lett ; 427: 28-37, 2018 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-29673909

RESUMO

Myelopoiesis is a complex process driven by essential transcription factors, including C/EBPα, PU.1, RUNX1, KLF4 and IRF8. Together, these factors are critical for the control of myeloid progenitor cell expansion and lineage determination in the development of granulocytes and monocytes/macrophages. MicroRNAs (miRNAs) are expressed in a cell type and lineage specific manner. There is increasing evidence that miRNAs fine-tune the expression of hematopoietic lineage-specific transcription factors and drive the lineage decisions of hematopoietic progenitor cells. In this review, we discuss recently discovered self-activating and feed-back mechanisms in which transcription factors and miRNAs interact during myeloid cell development. Furthermore, we delineate how some of these mechanisms are affected in acute myeloid leukemia (AML) and how disrupted transcription factor-miRNA interplays contribute to leukemogenesis.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , MicroRNAs/genética , Mielopoese/genética , Fatores de Transcrição/metabolismo , Animais , Linhagem da Célula/genética , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Humanos , Fator 4 Semelhante a Kruppel , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , MicroRNAs/metabolismo , Modelos Genéticos
14.
J Hum Genet ; 63(4): 431-446, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29382920

RESUMO

Genome-wide association studies (GWAS) have identified many susceptibility loci for cardiometabolic disorders. Most of the associated variants reside in non-coding regions of the genome including long non-coding RNAs (lncRNAs), which are thought to play critical roles in diverse biological processes. Here, we leveraged data from the available GWAS meta-analyses on lipid and obesity-related traits, blood pressure, type 2 diabetes, and coronary artery disease and identified 179 associated single-nucleotide polymorphisms (SNPs) in 102 lncRNAs (p-value < 2.3 × 10-7). Of these, 55 SNPs, either the lead SNP or in strong linkage disequilibrium with the lead SNP in the related loci, were selected for further investigations. Our in silico predictions and functional annotations of the SNPs as well as expression and DNA methylation analysis of their lncRNAs demonstrated several lncRNAs that fulfilled predefined criteria for being potential functional targets. In particular, we found evidence suggesting that LOC157273 (at 8p23.1) is involved in regulating serum lipid-cholesterol. Our results showed that rs4841132 in the second exon and cg17371580 in the promoter region of LOC157273 are associated with lipids; the lncRNA is expressed in liver and associates with the expression of its nearby coding gene, PPP1R3B. Collectively, we highlight a number of loci associated with cardiometabolic disorders for which the association may act through lncRNAs.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Cardiopatias/genética , Doenças Metabólicas/genética , RNA Longo não Codificante/genética , Biologia Computacional/métodos , Metilação de DNA , Epigênese Genética , Epistasia Genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , MicroRNAs/genética , Anotação de Sequência Molecular , Conformação de Ácido Nucleico , Interferência de RNA , RNA Longo não Codificante/química
15.
Invest Ophthalmol Vis Sci ; 58(12): 5368-5377, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29049738

RESUMO

Purpose: To identify microRNAs (miRNAs) involved in primary open-angle glaucoma (POAG), using genetic data. MiRNAs are small noncoding RNAs that posttranscriptionally regulate gene expression. Genetic variants in miRNAs or miRNA-binding sites within gene 3'-untranslated regions (3'UTRs) are expected to affect miRNA function and contribute to disease risk. Methods: Data from the recent genome-wide association studies on intraocular pressure, vertical cup-to-disc ratio (VCDR), cupa area and disc area were used to investigate the association of miRNAs with POAG endophenotypes. Putative targets of the associated miRNAs were studied according to their association with POAG and tested in cell line by transfection experiments for regulation by the miRNAs. Results: Of 411 miRNA variants, rs12803915:A/G in the terminal loop of pre-miR-612 and rs2273626:A/C in the seed sequence of miR-4707 were significantly associated with VCDR and cup area (P values < 1.2 × 10-4). The first variant is demonstrated to increase the miR-612 expression. We showed that the second variant does not affect the miR-4707 biogenesis, but reduces the binding of miR-4707-3p to CARD10, a gene known to be involved in glaucoma. Moreover, of 72,052 miRNA-binding-site variants, 47 were significantly associated with four POAG endophenotypes (P value < 6.9 × 10-6). Of these, we highlighted 10 variants that are more likely to affect miRNA-mediated gene regulation in POAG. These include rs3217992 and rs1063192, which have been shown experimentally to affect miR-138-3p- and miR-323b-5p-mediated regulation of CDKN2B. Conclusions: We identified a number of miRNAs that are associated with POAG endophenotypes. The identified miRNAs and their target genes are candidates for future studies on miRNA-related therapies for POAG.


Assuntos
Variação Genética , Estudo de Associação Genômica Ampla , Glaucoma de Ângulo Aberto/genética , MicroRNAs/genética , Sequência de Bases , Sítios de Ligação , Predisposição Genética para Doença , Humanos , Pressão Intraocular , Dados de Sequência Molecular , Fenótipo , Polimorfismo de Nucleotídeo Único
16.
Hum Mutat ; 38(7): 827-838, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28397307

RESUMO

Age-related macular degeneration (AMD), the leading cause of blindness in the elderly, is a complex disease that results from multiple genetic and environmental factors. MicroRNAs (miRNAs) are small noncoding RNAs that post-transcriptionally regulate target mRNAs and are frequently implicated in human diseases. Here, we investigated the association of genetic variants in miRNAs and miRNA-binding sites within gene 3'-untranslated regions (3'UTRs) with AMD using data from the largest AMD genome-wide association study. First, we identified three variants in miRNAs significantly associated with AMD. These include rs2168518:G>A in the miR-4513 seed sequence, rs41292412:C>T in pre-miR-122/miR-3591, and rs4351242:C>T in the terminal-loop of pre-miR-3135b. We demonstrated that these variants reduce expression levels of the mature miRNAs in vitro and pointed the target genes that may mediate downstream effects of these miRNAs in AMD. Second, we identified 54 variants (in 31 genes) in miRNA-binding sites associated with AMD. Based on stringent prioritization criteria, we highlighted the variants that are more likely to have an impact on the miRNA-target interactions. Further, we selected rs4151672:C>T within the CFB 3'UTR and experimentally showed that while miR-210-5p downregulates expression of CFB, the variant decreases miR-210-5p-mediated repression of CFB. Together, our findings support the notion that miRNAs may play a role in AMD.


Assuntos
Regiões 3' não Traduzidas , Variação Genética , Degeneração Macular/genética , MicroRNAs/genética , Células A549 , Algoritmos , Sítios de Ligação , Encéfalo/metabolismo , Complemento C3/genética , Fator B do Complemento/genética , Biologia Computacional , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Células HEK293 , Haplótipos , Humanos , Polimorfismo de Nucleotídeo Único
17.
Front Immunol ; 8: 1696, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29358931

RESUMO

We report here that the expression of the transcription factor T-bet, which is known to be required for effector cytotoxic CD8+ T lymphocytes (CTL) generation and effector memory cell formation, is regulated in CTL by microRNA-155 (miR-155). Importantly, we show that the proliferative effect of miR-155 on CD8+ T cells is mediated by T-bet. T-bet levels in CTL were controlled in vivo by miR-155 via SH2 (Src homology 2)-containing inositol phosphatase-1 (SHIP-1), a known direct target of miR-155, and SHIP-1 directly downregulated T-bet. Our studies reveal an important and unexpected signaling axis between miR-155, T-bet, and SHIP-1 in in vivo CTL responses and suggest an important signaling module that regulates effector CTL immunity.

18.
Cell Stem Cell ; 19(3): 383-96, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27424784

RESUMO

Umbilical cord blood (CB) is a convenient and broadly used source of hematopoietic stem cells (HSCs) for allogeneic stem cell transplantation. However, limiting numbers of HSCs remain a major constraint for its clinical application. Although one feasible option would be to expand HSCs to improve therapeutic outcome, available protocols and the molecular mechanisms governing the self-renewal of HSCs are unclear. Here, we show that ectopic expression of a single microRNA (miRNA), miR-125a, in purified murine and human multipotent progenitors (MPPs) resulted in increased self-renewal and robust long-term multi-lineage repopulation in transplanted recipient mice. Using quantitative proteomics and western blot analysis, we identified a restricted set of miR-125a targets involved in conferring long-term repopulating capacity to MPPs in humans and mice. Our findings offer the innovative potential to use MPPs with enhanced self-renewal activity to augment limited sources of HSCs to improve clinical protocols.


Assuntos
Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , MicroRNAs/metabolismo , ADP-Ribosil Ciclase 1/metabolismo , Animais , Antígenos CD34/metabolismo , Proliferação de Células , Autorrenovação Celular/genética , Redes Reguladoras de Genes , Transplante de Células-Tronco Hematopoéticas , Humanos , Marcação por Isótopo , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Modelos Biológicos , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Células-Tronco Multipotentes/transplante , Reprodutibilidade dos Testes , Fatores de Tempo
19.
Sci Rep ; 6: 28387, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27328823

RESUMO

MicroRNAs (miRNAs) serve as key post-transcriptional regulators of gene expression. Genetic variation in miRNAs and miRNA-binding sites may affect miRNA function and contribute to disease risk. Here, we investigated the extent to which variants within miRNA-related sequences could constitute a part of the functional variants involved in developing Alzheimer's disease (AD), using the largest available genome-wide association study of AD. First, among 237 variants in miRNAs, we found rs2291418 in the miR-1229 precursor to be significantly associated with AD (p-value = 6.8 × 10(-5), OR = 1.2). Our in-silico analysis and in-vitro miRNA expression experiments demonstrated that the variant's mutant allele enhances the production of miR-1229-3p. Next, we found miR-1229-3p target genes that are associated with AD and might mediate the miRNA function. We demonstrated that miR-1229-3p directly controls the expression of its top AD-associated target gene (SORL1) using luciferase reporter assays. Additionally, we showed that miR-1229-3p and SORL1 are both expressed in the human brain. Second, among 42,855 variants in miRNA-binding sites, we identified 10 variants (in the 3' UTR of 9 genes) that are significantly associated with AD, including rs6857 that increases the miR-320e-mediated regulation of PVRL2. Collectively, this study shows that miRNA-related variants are associated with AD and suggests miRNA-dependent regulation of several AD genes.


Assuntos
Doença de Alzheimer/genética , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas de Membrana Transportadoras/genética , MicroRNAs/genética , Nectinas/genética , Regiões 3' não Traduzidas , Doença de Alzheimer/metabolismo , Sítios de Ligação , Encéfalo/metabolismo , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , MicroRNAs/química , Conformação de Ácido Nucleico , Polimorfismo de Nucleotídeo Único
20.
Hum Mutat ; 37(3): 292-300, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26670097

RESUMO

MicroRNAs (miRNAs) are small noncoding RNAs that serve as key regulators of gene expression. They have been shown to be involved in a wide range of biological processes including neurodegenerative diseases. Genetic variants in miRNAs or miRNA-binding sites on their target genes could affect miRNA function and contribute to disease risk. Here, we investigated the association of miRNA-related genetic variants with Parkinson disease (PD) using data from the largest GWAS on PD. Of 243 miRNA variants, we identified rs897984:T>C in miR-4519 (P value = 1.3×10(-5) and OR = 0.93) and rs11651671:A>G in miR-548at-5p (P value = 1.1×10(-6) and OR = 1.09) to be associated with PD. We showed that the variant's mutant alleles change the secondary structure and decrease expression level of their related miRNAs. Subsequently, we highlighted target genes that might mediate the effects of miR-4519 and miR-548at-5p on PD. Among them, we experimentally showed that NSF is a direct target of miR-4519. Furthermore, among 48,844 miRNA-binding site variants, we found 32 variants (within 13 genes) that are associated with PD. Four of the host genes, CTSB, STX1B, IGSF9B, and HSD3B7, had not previously been reported to be associated with PD. We provide evidence supporting the potential impact of the identified miRNA-binding site variants on miRNA-mediated regulation of their host genes.


Assuntos
MicroRNAs/genética , Doença de Parkinson/genética , Sítios de Ligação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...