Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 13(1): 780-785, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30604971

RESUMO

Single-molecule magnets (SMMs) incorporate key properties that make them promising candidates for the emerging field of spintronics. The challenge to realize ordered SMM arrangements on surfaces and at the same time to preserve the magnetic properties upon interaction with the environment is a crucial point on the way to applications. Here we employ inelastic electron tunneling spectroscopy (IETS) to address the magnetic properties in single Fe4 complexes that are adsorbed in a highly ordered arrangement on graphene/Ir(111). We are able to substantially reduce the influence of both the tunneling tip and the adsorption environment on the Fe4 complex during the measurements by using appropriate tunneling parameters in combination with the flat-lying Fe4H derivative and a weakly interacting surface. This allows us to perform noninvasive IETS studies on these bulky molecules. From the measurements we identify intermultiplet spin transitions and determine the intramolecular magnetic exchange interaction constant on a large number of molecules. Although a considerable scattering of the exchange constant values is observed, the distribution maximum is located at a value that coincides with that of the bulk. Our findings confirm a retained molecular magnetism of the Fe4H complex at the local scale and evaluate the influence of the environment on the magnetic exchange interaction.

2.
Nanoscale ; 10(3): 1487-1493, 2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29303194

RESUMO

We report on the scanning tunneling microscopy/spectroscopy (STM/STS) study of cobalt phthalocyanine (CoPc) molecules deposited onto a back-gated graphene device. We observe a clear gate voltage (Vg) dependence of the energy position of the features originating from the molecular states. Based on the analysis of the energy shifts of the molecular features upon tuning Vg, we are able to determine the nature of the electronic states that lead to a gapped differential conductance. Our measurements show that capacitive couplings of comparable strengths exist between the CoPc molecule and the STM tip as well as between CoPc and graphene, thus facilitating electronic transport involving only unoccupied molecular states for both tunneling bias polarities. These findings provide novel information on the interaction between graphene and organic molecules and are of importance for further studies, which envisage the realization of single molecule transistors with non-metallic electrodes.

3.
Adv Mater ; 30(1)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29152806

RESUMO

Semiconductors with native ferromagnetism barely exist and defined nanostructures are almost unknown. This lack impedes the exploration of a new class of materials characterized by a direct combination of effects on the electronic system caused by quantum confinement effects with magnetism. A good example is EuO for which currently no reliable routes for nanoparticle synthesis can be established. Bottom-up approaches applicable to other oxides fail because of the labile oxidation state +II. Instead of targeting a direct synthesis, the two steps-"structure control" and "chemical transformation"-are separated. The generation of a transitional, hybrid nanophase is followed by its conversion into EuO under full conservation of all morphological features. Hierarchical EuO materials are now accessible in the shape of oriented nanodisks stacked to tubular particles. Magnetically, the coupling of either vortex or onion states has been found. An unexpected temperature dependence is governed by thermally activated transitions between these states.

4.
Nano Lett ; 17(12): 7177-7182, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29148799

RESUMO

We demonstrate that electrospray deposition enables the fabrication of highly periodic self-assembled arrays of Fe4H single molecule magnets on graphene/Ir(111). The energetic positions of molecular states are probed by means of scanning tunneling spectroscopy, showing pronounced long- and short-ranged spatial modulations, indicating the presence of both locally varying intermolecular as well as adsorption-site dependent molecule-substrate interactions. From the magnetic field dependence of the X-ray magnetic circular dichroism signal, we infer that the magnetic easy axis of each Fe4H molecule is oriented perpendicular to the sample surface and that after the deposition the value of the uniaxial anisotropy is identical to the one in bulk. Our findings therefore suggest that the observed interaction of the molecules with their surrounding does not modify the molecular magnetism, resulting in a two-dimensional array of molecular magnets that retain their bulk magnetic properties.

5.
Angew Chem Int Ed Engl ; 56(20): 5475-5479, 2017 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-28402600

RESUMO

Gaining external control over self-organization is of vital importance for future smart materials. Surfactants are extremely valuable for the synthesis of diverse nanomaterials. Their self-assembly is dictated by microphase separation, the hydrophobic effect, and head-group repulsion. It is desirable to supplement surfactants with an added mode of long-range and directional interaction. Magnetic forces are ideal, as they are not shielded in water. We report on surfactants with heads containing tightly bound transition-metal centers. The magnetic moment of the head was varied systematically while keeping shape and charge constant. Changes in the magnetic moment of the head led to notable differences in surface tension, aggregate size, and contact angle, which could also be altered by an external magnetic field. The most astonishing result was that the use of magnetic surfactants as structure-directing agents enabled the formation of porous solids with 12-fold rotational symmetry.

6.
Nano Lett ; 15(7): 4546-52, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26086677

RESUMO

Single molecule magnets (SMMs) have attracted considerable attention due to low-temperature magnetic hysteresis and fascinating quantum effects. The investigation of these properties requires the possibility to deposit well-defined monolayers or spatially isolated molecules within a well-controlled adsorption geometry. Here we present a successful fabrication of self-organized arrays of Fe4 SMMs on hexagonal boron nitride (h-BN) on Rh(111) as template. Using a rational design of the ligand shell optimized for surface assembly and electrospray as a gentle deposition method, we demonstrate how to obtain ordered arrays of molecules forming perfect hexagonal superlattices of tunable size, from small islands to an almost perfect monolayer. High-resolution low temperature scanning tunneling microscopy (STM) reveals that the Fe4 molecule adsorbs on the substrate in a flat geometry, meaning that its magnetic easy axis is perpendicular to the surface. By scanning tunneling spectroscopy (STS) and density functional theory (DFT) calculations, we infer that the majority- and minority-spin components of the spin-split lowest unoccupied molecular orbital (LUMO) can be addressed separately on a submolecular level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...