Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(3): e0449322, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37191558

RESUMO

Plasmodium parasites are the etiological agents of malaria, a disease responsible for over half a million deaths annually. Successful completion of the parasite's life cycle in the vertebrate host and transmission to a mosquito vector is contingent upon the ability of the parasite to evade the host's defenses. The extracellular stages of the parasite, including gametes and sporozoites, must evade complement attack in both the mammalian host and in the blood ingested by the mosquito vector. Here, we show that Plasmodium falciparum gametes and sporozoites acquire mammalian plasminogen and activate it into the serine protease plasmin to evade complement attack by degrading C3b. Complement-mediated permeabilization of gametes and sporozoites was higher in plasminogen-depleted plasma, suggesting that plasminogen is important for complement evasion. Plasmin also facilitates gamete exflagellation through complement evasion. Furthermore, supplementing serum with plasmin significantly increased parasite infectivity to mosquitoes and lowered the transmission-blocking activity of antibodies to Pfs230, a potent vaccine candidate currently in clinical trials. Finally, we show that human factor H, previously shown to facilitate complement evasion by gametes, also facilitates complement evasion by sporozoites. Plasmin and factor H simultaneously cooperate to enhance complement evasion by gametes and sporozoites. Taken together, our data show that Plasmodium falciparum gametes and sporozoites hijack the mammalian serine protease plasmin to evade complement attack by degrading C3b. Understanding of the mechanisms of complement evasion by the parasite is key to the development of novel effective therapeutics. IMPORTANCE Current approaches to control malaria are complicated by the development of antimalarial-resistant parasites and insecticide-resistant vectors. Vaccines that block transmission to mosquitoes and humans are a plausible alternative to overcome these setbacks. To inform the development of efficacious vaccines, it is imperative to understand how the parasite interacts with the host immune response. In this report, we show that the parasite can co-opt host plasmin, a mammalian fibrinolytic protein to evade host complement attack. Our results highlight a potential mechanism that may reduce efficacy of potent vaccine candidates. Taken together, our results will inform future studies in developing novel antimalarial therapeutics.


Assuntos
Antimaláricos , Culicidae , Malária , Animais , Humanos , Plasmodium falciparum , Fator H do Complemento/metabolismo , Esporozoítos/metabolismo , Fibrinolisina/metabolismo , Proteínas do Sistema Complemento , Células Germinativas/metabolismo , Plasminogênio/metabolismo , Mamíferos
2.
Microbiol Spectr ; : e0367122, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36847501

RESUMO

Malaria inflicts the highest rate of morbidity and mortality among the vector-borne diseases. The dramatic bottleneck of parasite numbers that occurs in the gut of the obligatory mosquito vector provides a promising target for novel control strategies. Using single-cell transcriptomics, we analyzed Plasmodium falciparum development in the mosquito gut, from unfertilized female gametes through the first 20 h after blood feeding, including the zygote and ookinete stages. This study revealed the temporal gene expression of the ApiAP2 family of transcription factors and of parasite stress genes in response to the harsh environment of the mosquito midgut. Further, employing structural protein prediction analyses, we found several upregulated genes predicted to encode intrinsically disordered proteins (IDPs), a category of proteins known for their importance in regulation of transcription, translation, and protein-protein interactions. IDPs are known for their antigenic properties and may serve as suitable targets for antibody- or peptide-based transmission suppression strategies. In total, this study uncovers the P. falciparum transcriptome from early to late parasite development in the mosquito midgut, inside its natural vector, which provides an important resource for future malaria transmission-blocking initiatives. IMPORTANCE The malaria parasite Plasmodium falciparum causes more than half a million deaths per year. The current treatment regimen targets the symptom-causing blood stage inside the human host. However, recent incentives in the field call for novel interventions to block parasite transmission from humans to the mosquito vector. Therefore, we need to better understand the parasite biology during its development inside the mosquito, including a deeper understanding of the expression of genes controlling parasite progression during these stages. Here, we have generated single-cell transcriptome data, covering P. falciparum's development, from gamete to ookinete inside the mosquito midgut, uncovering previously untapped parasite biology, including a repertoire of novel biomarkers to be explored in future transmission-blocking efforts. We anticipate that our study provides an important resource, which can be further explored to improve our understanding of the parasite biology as well as aid in guiding future malaria intervention strategies.

3.
Trends Parasitol ; 38(2): 147-159, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34649773

RESUMO

Plasmodium and other vector-borne pathogens have evolved mechanisms to hijack the mammalian fibrinolytic system to facilitate infection of the human host and the invertebrate vector. Plasmin, the effector protease of fibrinolysis, maintains homeostasis in the blood vasculature by degrading the fibrin that forms blood clots. Plasmin also degrades proteins from extracellular matrices, the complement system, and immunoglobulins. Here, we review some of the mechanisms by which vector-borne pathogens interact with components of the fibrinolytic system and co-opt its functions to facilitate transmission and infection in the host and the vector. Further, we discuss innovative strategies beyond conventional therapeutics that could be developed to target the interaction of vector-borne pathogens with the fibrinolytic proteins and prevent their transmission.


Assuntos
Malária , Doenças Transmitidas por Vetores , Animais , Fibrinolisina/metabolismo , Fibrinólise , Humanos , Malária/prevenção & controle , Mamíferos , Plasminogênio/metabolismo
4.
Int J Parasitol ; 52(1): 23-33, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34390743

RESUMO

Asymptomatic malaria parasite carriers do not seek anti-malarial treatment and may constitute a silent infectious reservoir. In order to assess the level of asymptomatic and symptomatic carriage amongst adolescents in a highly endemic area, and to identify the risk factors associated with such carriage, we conducted a cross-sectional survey of 1032 adolescents (ages 10-19 years) from eight schools located in Ibadan, southwestern Nigeria in 2016. Blood films and blood spot filter paper samples were prepared for microscopy and DNA analysis. The prevalence of asymptomatic malaria was determined using microscopy, rapid diagnostic tests and PCR for 658 randomly selected samples. Of these, we found that 80% of asymptomatic schoolchildren were positive for malaria parasites by PCR, compared with 47% and 9%, determined by rapid diagnostic tests and microscopy, respectively. Malaria parasite species typing was performed using PCR targeting the mitochondrial CoxIII gene, and revealed high rates of carriage of Plasmodium malariae (53%) and Plasmodium ovale (24%). Most asymptomatic infections were co-infections of two or more species (62%), with Plasmodium falciparum + P. malariae the most common (35%), followed by P. falciparum + P. malariae + P. ovale (21%) and P. falciparum + P. ovale (6%). Single infections of P. falciparum, P. malariae and P. ovale accounted for 24%, 10% and 4% of all asymptomatic infections, respectively. To compare the species composition of asymptomatic and symptomatic infections, further sample collection was carried out in 2017 at one of the previously sampled schools, and at a nearby hospital. Whilst the species composition of the asymptomatic infections was similar to that observed in 2016, the symptomatic infections were markedly different, with single infections of P. falciparum observed in 91% of patients, P. falciparum + P. malariae in 5% and P. falciparum + P. ovale in 4%.


Assuntos
Coinfecção , Malária Falciparum , Malária , Parasitos , Plasmodium ovale , Plasmodium , Adolescente , Adulto , Animais , Infecções Assintomáticas/epidemiologia , Criança , Coinfecção/epidemiologia , Estudos Transversais , Humanos , Malária/complicações , Malária/epidemiologia , Malária Falciparum/complicações , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Nigéria/epidemiologia , Plasmodium/genética , Plasmodium falciparum/genética , Plasmodium malariae/genética , Plasmodium ovale/genética , Prevalência , Adulto Jovem
5.
Trends Parasitol ; 37(9): 775-776, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34275728

RESUMO

Anopheles mosquitoes feed on plant nectars as their main source of sugar. Wang et al. show that Asaia bacteria proliferate in the midgut of mosquitoes that feed on glucose or trehalose. Asaia increases the lumenal pH by downregulating mosquito vacuolar ATPase expression, therefore increasing Plasmodium gametogenesis and vector competence.


Assuntos
Anopheles , Malária , Plasmodium , Animais , Mosquitos Vetores , Açúcares
6.
Infect Dis Poverty ; 10(1): 77, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34034827

RESUMO

BACKGROUND: Malaria rapid diagnostic tests have become a primary and critical tool for malaria diagnosis in malaria-endemic countries where Plasmodium falciparum Histidine Rich Protein 2-based rapid diagnostic tests (PfHRP2-based RDTs) are widely used. However, in the last decade, the accuracy of PfHRP2-based RDTs has been challenged by the emergence of P. falciparum strains harbouring deletions of the P. falciparum histidine rich protein 2 (pfhrp2) gene, resulting in false-negative results. In the Democratic Republic of Congo (D.R. Congo), little is known about the prevalence of the pfhrp2 gene deletion among P. falciparum isolates infecting symptomatic patients, especially in low to moderate transmission areas where pfhrp2 deletion parasites are assumed to emerge and spread. Here we determine the local prevalence and factors associated with pfhrp2 gene deletions among symptomatic malaria patients in the Kwilu Province of the D.R. Congo. METHODS: We used secondary data from a prospective health facility-based cross-sectional study conducted in 2018. Blood was collected for microscopy, PfHRP2-RDT, and spotted onto Whatman filter paper for downstream genetic analysis. Genomic DNA was extracted and used to perform PCR assays for the detection and confirmation of pfhrp2 gene deletions. Fischer's exact and the Kruskal-Wallis tests were applied to look for associations between potential explanatory variables and the pfhrp2 gene deletion with a level of statistical significance set at P < 0.05. RESULTS: Of the 684 enrolled symptomatic patients, 391 (57.7%) were female. The majority (87.7%) reported the presence of mosquito breeding sites within the household's compound, and fever was the most reported symptom (81.6%). The overall prevalence of the pfhrp2 gene deletion was 9.2% (95% CI: 6.7%-12.1%). The deletion of the pfhrp2 gene was associated with health zone of origin (P = 0.012) and age (P = 0.019). Among false-negative PfHRP2-RDT results, only 9.9% were due to pfhrp2 gene deletion. CONCLUSIONS: P. falciparum isolates with pfhrp2 gene deletions are relatively common among symptomatic patients in Kwilu province. Further investigations are needed to provide enough evidence for policy change. Meanwhile, the use of RDTs targeting PfHRP2 and parasite lactate dehydrogenase (pLDH) antigens could limit the spread of deleted isolates.


Assuntos
Malária Falciparum , Malária , Animais , Antígenos de Protozoários/genética , Estudos Transversais , República Democrática do Congo/epidemiologia , Testes Diagnósticos de Rotina , Feminino , Histidina , Humanos , Malária Falciparum/diagnóstico , Malária Falciparum/epidemiologia , Plasmodium falciparum/genética , Prevalência , Estudos Prospectivos
7.
Int J Parasitol Drugs Drug Resist ; 8(3): 451-458, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30396012

RESUMO

Both vaccine and therapeutic approaches to malaria are based on conventional paradigms; whole organism or single antigen epitope-based vaccines administered with or without an adjuvant, and chemotherapeutics (anti-malaria drugs) that are toxic to the parasite. Two major problems that limit the effectiveness of these approaches are i) high levels of antigenic variation within parasite populations rendering vaccination efficacy against all variants difficult, and ii) the capacity of the parasite to quickly evolve resistance to drugs. We describe a new approach to both protection from and treatment of malaria parasites that involves the direct stimulation of the host innate immune response through the administration of a Toll-Like Receptor-2 (TLR2) agonist. The activity of PEG-Pam2Cys against the hepatocytic stages, erythrocytic stages and gametocytes of the rodent malaria parasite Plasmodium yoelii was investigated in laboratory mice. We show that administration of PEG-Pam2Cys, a soluble form of the TLR2 agonist S-[2,3-bis(palmitoyloxy)propyl] cysteine (Pam2Cys), significantly and dramatically reduces the numbers of malaria parasites that grow in the livers of mice following subsequent challenge with sporozoites. We also show that treatment can also clear parasites from the liver when administered subsequent to the establishment of infection. Finally, PEG-Pam2Cys can reduce the numbers of mosquitoes that are infected, and the intensity of their infection, following blood feeding on gametocytaemic mice. These results suggest that this compound could represent a novel liver stage anti-malarial that can be used both for the clearance of parasites following exposure and for the prevention of the establishment of infection.


Assuntos
Antimaláricos/uso terapêutico , Imunoterapia/métodos , Lipopeptídeos/uso terapêutico , Malária/tratamento farmacológico , Malária/prevenção & controle , Plasmodium yoelii/efeitos dos fármacos , Esporozoítos/efeitos dos fármacos , Animais , Anticorpos Antiprotozoários/sangue , Antimaláricos/administração & dosagem , Antimaláricos/imunologia , Terapia Combinada/métodos , Culicidae/efeitos dos fármacos , Culicidae/parasitologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Feminino , Imunidade Inata/efeitos dos fármacos , Lipopeptídeos/administração & dosagem , Lipopeptídeos/imunologia , Fígado/efeitos dos fármacos , Fígado/parasitologia , Malária/imunologia , Malária/parasitologia , Camundongos , Plasmodium yoelii/crescimento & desenvolvimento , Plasmodium yoelii/imunologia , Receptor 2 Toll-Like/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...