Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mar Environ Res ; 193: 106253, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37979403

RESUMO

Knowledge about connectivity between populations is essential for the fisheries management of commercial species. The lobster Jasus frontalis inhabits two oceanic island groups, the Juan Fernández Archipelago and the Desventuradas Islands, separated by 800 km. Since this species is primarily exploited in the Juan Fernández Archipelago, knowledge of the connectivity patterns among islands is foundational for species management. Here, we used variability at single-nucleotide polymorphisms (SNPs) and individual-based modeling (IBM) to estimate the genetic structure and connectivity between J. frontalis populations in these island groups. The variability at 9090 SNPs suggests two genetic populations, one in the Juan Fernández Archipelago and one in the Desventuradas Islands. Furthermore, IBM suggests an asymmetric connectivity pattern, with particles moving from the Juan Fernández Archipelago to the Desventuradas Islands but not vice versa. Since the IBM analysis suggests asymmetric larval movement between the islands, and the genetic analysis indicates isolation between the Juan Fernández Archipelago and the Desventuradas Islands, larval retention mechanisms such as small-scale oceanographic processes or behavior could hinder larval movement between islands. This study highlights the importance of using more than one methodology to estimate population connectivity.


Assuntos
Palinuridae , Animais , Palinuridae/genética , Ilhas , Metagenômica , Genética Populacional , Oceanos e Mares
2.
PLoS One ; 14(2): e0212485, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30794609

RESUMO

The Juan Fernández Ridge (JFRE) is a vulnerable marine ecosystem (VME) located off the coast of central Chile formed by the Juan Fernández Archipelago and a group of seamounts. This ecosystem has unique biological and oceanographic features, characterized by: small geographical units, high degree of endemism with a high degree of connectivity within the system. Two fleets have historically operated in this system: a long term coastal artisanal fishery associated with the Islands, focused mainly on lobster, and a mainland based industrial demersal finfish fishery operating on the seamounts which is currently considered overexploited. The management of these fisheries has been based on a classical single-species approach to determine output controls (industrial fleet) and a mixed management system with formal and informal components (artisanal fleet). There has been growing interest in increasing the exploitation of fisheries, and modernization of the fishing fleet already operating in the JFRE. Under this scenario of increased levels of fishing exploitation and the high level of interrelation of species it might be necessary to understand the impact of these fisheries from a holistic perspective based on a ecosystem-based modeling approach. To address these challenges we developed an Atlantis end-to-end model was configured for this ecosystem. The implemented model has a high degree of skill in representing the observed trends and fluctuations of the JFRE. The model shows that the industrial fishing has a localized impact and the artisanal fisheries have a relatively low impact on the ecosystem, mainly via the lobster fishery. The model indicates that the depletion of large sized lobster has leads to an increase in the population of sea urchins. Although this increase is not sufficient, as yet, to cause substantial flow-on effects to other groups, caution is advised in case extra pressure leads the ecosystem towards a regime shift.


Assuntos
Ecossistema , Pesqueiros , Animais , Biomassa , Chile , Conservação dos Recursos Naturais/economia , Meio Ambiente , Pesqueiros/economia , Pesqueiros/organização & administração , Geografia , Ilhas , Modelos Biológicos , Oceanografia , Oceano Pacífico , Alimentos Marinhos/economia
4.
PLoS One ; 13(7): e0200146, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30044805

RESUMO

Knowledge about the spatial patterns and movements of crustaceans has gained importance since the creation of marine protected areas and the development of spatial management for benthic ecosystems. The Juan Fernández spiny lobster (Jasus frontalis) is an endemic marine species and most valuable resource that exhibits migratory dynamics in a highly spatially regulated fishery. To study movement patterns around Alexander Selkirk Island, a mark-recapture program was implemented in 2008, when approximately 7000 non-commercial (undersized) lobsters were tagged and followed for nearly 14 months. Using quantitative georeferenced data, this study revealed spatial structuring of Juan Fernández spiny lobster and tested hypotheses about alongshore and inshore-offshore movements. Eight clusters were identified around Alexander Selkirk Island, with moderate time-varying connectivity between them. Seasonal inshore-offshore movements were detected all around the island, but more conspicuously to the north. Average travelling distance was 1.2 km (1.7 sd). Our results confirmed that towards the end of austral spring males and females embark in a seasonal offshore migration to deeper waters, returning to shallower waters only during winter. These findings quantitatively consolidate the conceptual migratory model that local fishermen had already inferred for this resource from about a century of sustainable fishing.


Assuntos
Migração Animal , Palinuridae , Animais , Chile , Feminino , Ilhas , Masculino , Oceanos e Mares , Estações do Ano , Análise Espacial , Fatores de Tempo
5.
J Hered ; 104(2): 223-33, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23341535

RESUMO

The genetic structure of present-day populations has been highly affected by glacial periods and physical oceanographic forcing, particularly with respect to species distributions and population gene-flow patterns. We assessed the current genetic composition of the Jasus frontalis population in the southeastern Pacific Islands off the coast of Chile to evaluate their connectivity modulated by contemporary and historic oceanographic processes. Population structure and demographical history for this species were assessed based on classic and Bayesian approaches using 84 sequences of cytochrome oxidase subunit I. In addition, we estimated the time of origin of J. frontalis in the different geographic zones. The analyses show a panmictic population with high gene flow between subcomponents and a lack of genetic structure (F (ST) < 0.008). This high gene flow is mainly modulated by mesoscale oceanographic factors such as eddies and meanders. In a historical spatial context, the most probable common ancestor of J. frontalis could have colonized the region around 0.258 million years before present (MYBP), first becoming established in the Juan Fernández Archipelago and then expanding toward the Desventuradas Islands. The demographic history shows a consistent increase in the effective population size (N ( e )) starting approximately 0.130 MYBP, which is highly correlated with sea-level changes during the last glacial maximum.


Assuntos
Fluxo Gênico , Palinuridae/genética , Animais , Chile , DNA Mitocondrial , Complexo IV da Cadeia de Transporte de Elétrons/genética , Variação Genética , Genética Populacional , Haplótipos , Mutação , Oceanografia , Ilhas do Pacífico , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA