Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Muscle Nerve ; 61(2): 243-252, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31724205

RESUMO

INTRODUCTION: Critical limitations of processed acellular nerve allograft (PNA) are linked to Schwann cell function. Side-to-side bridge grafting may enhance PNA neurotrophic potential. METHODS: Sprague-Dawley rats underwent tibial nerve transection and immediate repair with 20-mm PNA (n = 33) or isograft (ISO; n = 9) or 40-mm PNA (n = 33) or ISO (n = 9). Processed acellular nerve allograft groups received zero, one, or three side-to-side bridge grafts between the peroneal nerve and graft. Muscle weight, force generation, and nerve histomorphology were tested 20 weeks after repair. Selected animals underwent neuron back labeling with fluorescent dyes. RESULTS: Inner axon diameters, g-ratios, and axon counts were smaller in the distal vs proximal aspect of each graft (P < .05). Schwann cell counts were greater, with a lower proportion of senescent cells for groups with bridges (P < .05). Retrograde labeling demonstrated that 6.6% to 17.7% of reinnervating neurons were from the peroneal pool. DISCUSSION: Bridge grafting positively influenced muscle recovery and Schwann cell counts and senescence after long PNA nerve reconstruction.


Assuntos
Tecido Nervoso/transplante , Transferência de Nervo , Aloenxertos , Animais , Contagem de Células , Senescência Celular , Feminino , Contração Muscular/fisiologia , Músculo Esquelético/anatomia & histologia , Regeneração Nervosa/fisiologia , Tamanho do Órgão , Nervo Fibular/anatomia & histologia , Nervo Fibular/transplante , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Células de Schwann , Nervo Tibial/anatomia & histologia , Nervo Tibial/lesões , Nervo Tibial/transplante
3.
Physiol Rep ; 3(7)2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26149282

RESUMO

Greater cerebral artery vasodilation mediated by cyclooxygenase (COX) in female animals is unexplored in humans. We hypothesized that young, healthy women would exhibit greater basal cerebral blood flow (CBF) and greater vasodilation during hypoxia or hypercapnia compared to men, mediated by a larger contribution of COX. We measured middle cerebral artery velocity (MCAv, transcranial Doppler ultrasound) in 42 adults (24 women, 18 men; 24 ± 1 years) during two visits, in a double-blind, placebo-controlled design (COX inhibition, 100 mg oral indomethacin, Indo). Women were studied early in the follicular phase of the menstrual cycle (days 1-5). Two levels of isocapnic hypoxia (SPO2 = 90% and 80%) were induced for 5-min each. Separately, hypercapnia was induced by increasing end-tidal carbon dioxide (PETCO 2) 10 mmHg above baseline. A positive change in MCAv (ΔMCAv) reflected vasodilation. Basal MCAv was greater in women compared to men (P < 0.01) across all conditions. Indo decreased baseline MCAv (P < 0.01) similarly between sexes. Hypoxia increased MCAv (P < 0.01), but ΔMCAv was not different between sexes. Indo did not alter hypoxic vasodilation in either sex. Hypercapnia increased MCAv (P < 0.01), but ΔMCAv was not different between sexes. Indo elicited a large decrease in hypercapnic vasodilation (P < 0.01) that was similar between sexes. During the early follicular phase, women exhibit greater basal CBF than men, but similar vasodilatory responses to hypoxia and hypercapnia. Moreover, COX is not obligatory for hypoxic vasodilation, but plays a vital and similar role in the regulation of basal CBF (~30%) and hypercapnic response (~55%) between sexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...