Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(5): e2214353120, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36689662

RESUMO

Rubble piles asteroids consist of reassembled fragments from shattered monolithic asteroids and are much more abundant than previously thought in the solar system. Although monolithic asteroids that are a kilometer in diameter have been predicted to have a lifespan of few 100 million years, it is currently not known how durable rubble pile asteroids are. Here, we show that rubble pile asteroids can survive ambient solar system bombardment processes for extremely long periods and potentially 10 times longer than their monolith counterparts. We studied three regolith dust particles recovered by the Hayabusa space probe from the rubble pile asteroid 25143 Itokawa using electron backscatter diffraction, time-of-flight secondary ion mass spectrometry, atom probe tomography, and 40Ar/39Ar dating techniques. Our results show that the particles have only been affected by shock pressure of ca. 5 to 15 GPa. Two particles have 40Ar/39Ar ages of 4,219 ± 35 and 4,149 ± 41 My and when combined with thermal and diffusion models; these results constrain the formation age of the rubble pile structure to ≥4.2 billion years ago. Such a long survival time for an asteroid is attributed to the shock-absorbent nature of rubble pile material and suggests that rubble piles are hard to destroy once they are created. Our results suggest that rubble piles are probably more abundant in the asteroid belt than previously thought and provide constrain to help develop mitigation strategies to prevent asteroid collisions with Earth.


Assuntos
Poeira , Planeta Terra , Difusão , Elétrons , Longevidade
2.
RSC Adv ; 8(71): 40829-40835, 2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-35557913

RESUMO

Hexagonal boron nitride (h-BN) is rendered magnetically responsive in aqueous media by binding superparamagnetic magnetite nanoparticles 8.5-18.5 nm in diameter on the surface. The composite material was generated under continuous flow in water in a dynamic thin film in a vortex fluidic device (VFD) with the source of iron generated by laser ablation of a pure iron metal target in the air above the liquid using a Nd:YAG pulsed laser operating at 1064 nm and 360 mJ. Optimum operating parameters of the VFD were a rotational speed of 7.5k rpm for the 20 mm OD (17.5 mm ID) borosilicate glass tube inclined at 45 degrees, with a h-BN concentration at 0.1 mg mL-1, delivered at 1.0 mL min-1 using a magnetically stirred syringe to keep the h-BN uniformly dispersed in water prior to injection into the base of the rapidly rotating tube. The resulting composite material, containing 5.75% weight of iron, exhibited high phosphate ion adsorption capacity, up to 171.2 mg PO4 3- per gram Fe, which was preserved on recycling the material five times.

3.
Chempluschem ; 82(3): 416-422, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31962030

RESUMO

Highly faceted superparamagnetic magnetite nanoparticles roughly 11 nm in diameter are readily accessible in the presence of p-phosphonated calix[n]arenes of different ring sizes (n=4, 5 and 6), through the use of a simple co-precipitation technique. In contrast, the larger calix[8]arene affords spherical particles of comparable size. The maximum magnetization is 70-60 emu g-1 , which decreases with increasing size of the calixarene macrocycle, and the evidence indicates that the calixarenes bind to the surface of the nanoparticles via the phosphonate head groups rather than the phenolic oxygen centers. The stabilized nanoparticles show dual functionality: they remove up to 62 % of nitrate nitrogen and 48 % of phosphate from an aqueous effluent after 24 hours at concentrations of only 1 g L-1 of calixarene-coated nanoparticles.

4.
Bioresour Technol ; 220: 55-61, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27566512

RESUMO

Acid stimulated accumulation of insoluble phosphorus within microbial cells is highly beneficial to wastewater treatment but remains largely unexplored. Using single cell analyses and next generation sequencing, the response of active polyphosphate accumulating microbial communities under conditions of enhanced phosphorus uptake under both acidic and aerobic conditions was characterised. Phosphorus accumulation activities were highest under acidic conditions (pH 5.5>8.5), where a significant positive effect on bioaccumulation was observed at pH 5.5 when compared to pH 8.5. In contrast to the Betaproteobacteria and Actinobacteria dominated enhanced biological phosphorus removal process, the functionally active polyP accumulators at pH 5.5 belonged to the Gammaproteobacteria, with key accumulators identified as members of the families Aeromonadaceae and Enterobacteriaceae. This study demonstrated a significant enrichment of key polyphosphate kinase and exopolyphosphatase genes within the community metagenome after acidification, concomitant with an increase in P accumulation kinetics.


Assuntos
Consórcios Microbianos/fisiologia , Filogenia , Polifosfatos/metabolismo , Águas Residuárias/química , Águas Residuárias/microbiologia , Betaproteobacteria/genética , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Concentração de Íons de Hidrogênio , Cinética , Consórcios Microbianos/genética , Fósforo/metabolismo , Lagoas , Austrália Ocidental
5.
J Colloid Interface Sci ; 443: 88-96, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25540825

RESUMO

Ramizol® (1,3,5-tris[(1E)-2'-(4'-benzoic acid)vinyl]benzene) is a potent amphiphilic anti-microbial agent. It is essentially a planar molecule and can interact with the surface of graphene via extended π-π interactions. Herein we demonstrate the utility of Ramizol® in potentially acting as a molecular 'wedge' to exfoliate graphene and stabilise it in water. The non-covalent attachment of Ramizol® on the graphene surface enables release of Ramizol® by altering the pH of the solution. Furthermore, the stabilised composite material demonstrates antibacterial activity against Staphylococcus aureus which leads to potential in biomedical applications with graphene acting as a drug carrier as well as enhancing the structural strength of the composite material.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Benzoatos/síntese química , Benzoatos/farmacologia , Grafite/química , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Estilbenos/síntese química , Estilbenos/farmacologia , Água/química , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Infecções Estafilocócicas/microbiologia
6.
Chem Commun (Camb) ; 49(74): 8172-4, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23939664

RESUMO

In situ sonic probe exfoliated graphene sheets in the presence of various concentrations of p-phosphonic acid calix[8]arene are effective in removing nitrate from aquatic effluents, with the efficiency increasing for higher ratios of calixarene to graphite. Mild sonication of the nitrate-adsorbed material releases some nitrate ions back to the effluent.


Assuntos
Calixarenos/química , Grafite/química , Nitratos/química , Ácidos Fosforosos/química , Modelos Moleculares , Tamanho da Partícula , Propriedades de Superfície
7.
Nanoscale ; 5(7): 2627-31, 2013 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-23440091

RESUMO

Composite materials based on superparamagnetic magnetite nanoparticles embedded in polyvinylpyrrolidone (PVP) are generated in a continuous flow vortex fluidic device (VFD). The same device is effective in entrapping microalgal cells within this material, such that the functional cells can be retrieved from aqueous dispersions using an external magnet.


Assuntos
Separação Celular/métodos , Nanopartículas de Magnetita/química , Microalgas/citologia , Técnicas Analíticas Microfluídicas/métodos , Polímeros/química , Microalgas/fisiologia , Povidona/química
8.
J Appl Phycol ; 23(4): 763-775, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21909190

RESUMO

Six different strains of the green microalgae Botryococcus belonging to the A-race or B-race, accumulating alkadiene or botryococcene hydrocarbons, respectively, were compared for biomass and hydrocarbon productivities. Biomass productivity was assessed gravimetrically upon strain growth in the laboratory under defined conditions. Hydrocarbon productivities were measured by three different and independent experimental approaches, including density equilibrium of the intact cells and micro-colonies, spectrophotometric analysis of hydrocarbon extracts, and gravimetric quantitation of eluted hydrocarbons. All three hydrocarbon-quantitation methods yielded similar results for each of the strains examined. The B-race microalgae Botryococcus braunii var. Showa and Kawaguchi-1 constitutively accumulated botryococcene hydrocarbons equivalent to 30% and 20%, respectively, of their overall biomass. The A-race microalgae Botryococcus braunii, varieties Yamanaka, UTEX 2441 and UTEX LB572 constitutively accumulated alkadiene hydrocarbons ranging from 14% to 13% and 10% of their overall biomass, respectively. Botryococcus sudeticus (UTEX 2629), a morphologically different green microalga, had the lowest hydrocarbon accumulation, equal to about 3% of its overall biomass. Results validate the density equilibrium and spectrophotometric analysis methods in the quantitation of botryococcene-type hydrocarbons. These analytical advances will serve in the screening and selection of B. braunii and of other microalgae in efforts to identify those having a high hydrocarbon content for use in commercial applications.

9.
Bioresour Technol ; 102(18): 8403-13, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21463932

RESUMO

Photobiological hydrogen production has advanced significantly in recent years, and on the way to becoming a mature technology. A variety of photosynthetic and non-photosynthetic microorganisms, including unicellular green algae, cyanobacteria, anoxygenic photosynthetic bacteria, obligate anaerobic, and nitrogen-fixing bacteria are endowed with genes and proteins for H2-production. Enzymes, mechanisms, and the underlying biochemistry may vary among these systems; however, they are all promising catalysts in hydrogen production. Integration of hydrogen production among these organisms and enzymatic systems is a recent concept and a rather interesting development in the field, as it may minimize feedstock utilization and lower the associated costs, while improving yields of hydrogen production. Photobioreactor development and genetic manipulation of the hydrogen-producing microorganisms is also outlined in this review, as these contribute to improvement in the yield of the respective processes.


Assuntos
Hidrogênio/metabolismo , Fotobiologia/métodos , Fotobiologia/tendências , Enzimas/metabolismo , Engenharia Genética , Microalgas/metabolismo , Fotossíntese
10.
Bioresour Technol ; 101(7): 2359-66, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20005092

RESUMO

Mechanical fractionation and aqueous or aqueous/organic two-phase partition approaches were applied for extraction and separation of extracellular terpenoid hydrocarbons from Botryococcus braunii var. Showa. A direct spectrophotometric method was devised for the quantitation of botryococcene and associated carotenoid hydrocarbons extracted by this method. Separation of extracellular botryococcene hydrocarbons from the Botryococcus was achieved upon vortexing of the micro-colonies with glass beads, either in water followed by buoyant density equilibrium to separate hydrocarbons from biomass, or in the presence of heptane as a solvent, followed by aqueous/organic two-phase separation of the heptane-solubilized hydrocarbons (upper phase) from the biomass (lower aqueous phase). Spectral analysis of the upper heptane phase revealed the presence of two distinct compounds, one absorbing in the UV-C, attributed to botryococcene(s), the other in the blue region of the spectrum, attributed to a carotenoid. Specific extinction coefficients were developed for the absorbance of triterpenes at 190nm (epsilon = 90 +/- 5 mM(-1) cm(-1)) and carotenoids at 450 nm (epsilon=165+/-5mM(-1) cm(-1)) in heptane. This enabled application of a direct spectrophotometric method for the quantitation of water- or heptane-extractable botryococcenes and carotenoids. B. braunii var. Showa constitutively accumulates approximately 30% of the dry biomass as extractable (extracellular) botryococcenes, and approximately 0.2% of the dry biomass in the form of a carotenoid. It was further demonstrated that heat-treatment of the Botryococcus biomass substantially accelerates the rate and yield of the extraction process. Advances in this work serve as foundation for a cyclic Botryococcus growth, non-toxic extraction of extracellular hydrocarbons, and return of the hydrocarbon-depleted biomass to growth conditions for further product generation.


Assuntos
Clorófitas/química , Espaço Extracelular/química , Terpenos/análise , Terpenos/isolamento & purificação , Biomassa , Clorófitas/citologia , Clorófitas/crescimento & desenvolvimento , Clorófitas/metabolismo , Fenômenos Mecânicos , Pigmentos Biológicos/isolamento & purificação , Análise Espectral , Esqualeno/análise , beta Caroteno/análise
11.
Biotechnol Bioeng ; 102(5): 1406-15, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19031427

RESUMO

The work provides a simple method, based on a direct density equilibrium measurement, for the rapid in situ estimation of total lipid, hydrocarbon or biopolymer content in a variety of prokaryotic and eukaryotic samples. The method can be readily applied to live microalgae and photosynthetic bacteria, single-celled or colonial microorganisms, as well as cellular fractions and isolated subcellular compartments or components. In this approach, the absolute lipid, hydrocarbon, or biopolymer content of the cells can be readily calculated. This method is especially useful for tracking the oil or polymer content of strains of microalgae and other microorganisms, whose lipid, hydrocarbon or biopolymer content may change with cultivation conditions and/or time, as the case would be in microorganism lipid-induction industrial processes. The method is also useful for the direct in situ measurement of storage polymer accumulation in live cells, such as starch in microalgae and polyhydroxybutyrate, or other polyhydroxyalkanoates, in photosynthetic and non-photosynthetic bacteria.


Assuntos
Biopolímeros/análise , Técnicas de Química Analítica/métodos , Células Eucarióticas/química , Hidrocarbonetos/análise , Lipídeos/análise , Células Procarióticas/química , Centrifugação com Gradiente de Concentração/métodos , Frações Subcelulares/química
12.
Bioresour Technol ; 99(15): 6799-808, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18334289

RESUMO

The aim of this paper was to gain further insight into the effect of the clay pretreatment process on photofermentative hydrogen production. This two-stage process involved a clay pretreatment step followed by photofermentation which was performed under anaerobic conditions with the illumination by Tungsten lamps. Rhodobacter sphaeroides O.U.001 was used for photofermentation. Higher amounts of color (65%), total phenol (81%) and chemical oxygen demand (31%) removal efficiencies were achieved after clay pretreatment process. During photofermentative hydrogen production with the effluent of clay pretreatment process, the main organic compounds resulting higher hydrogen production rates were found to be acetic, lactic, propionic, and butyric acids. Compared to photofermentation using raw olive mill wastewater ( 16LH2/LOMW), the amount of photofermentative hydrogen production was doubled by using the effluent of the clay pretreatment process (31.5LH2/LOMW). The reasons for the improvement of hydrogen production by clay treatment can be attributed to the high removal of the hardly biodegradable compounds such as phenols; minor removal of organic acids, sugars and amino acids that are known to enhance photofermentative hydrogen production; and the color depletion of raw OMW which might cause a shadowing effect on the photosynthetic bacteria.


Assuntos
Silicatos de Alumínio , Fermentação , Indústria Alimentícia , Hidrogênio/química , Resíduos Industriais , Olea , Fotoquímica , Poluentes da Água/química , Argila
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...