Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 41(10): 2091-2105, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33472822

RESUMO

Trigeminal neuropathic pain is the most debilitating pain disorder but current treatments including opiates are not effective. A common symptom of trigeminal neuropathic pain is cold allodynia/hyperalgesia or cold hypersensitivity in orofacial area, a region where exposure to cooling temperatures are inevitable in daily life. Mechanisms underlying trigeminal neuropathic pain manifested with cold hypersensitivity are not fully understood. In this study, we investigated trigeminal neuropathic pain in male rats following infraorbital nerve chronic constrictive injury (ION-CCI). Assessed by the orofacial operant behavioral test, ION-CCI animals displayed orofacial cold hypersensitivity. The cold hypersensitivity was associated with the hyperexcitability of small-sized trigeminal ganglion (TG) neurons that innervated orofacial regions. Furthermore, ION-CCI resulted in a reduction of A-type voltage-gated K+ currents (IA currents) in these TG neurons. We further showed that these small-sized TG neurons expressed Kv4.3 voltage-gated K+ channels, and Kv4.3 expression in these cells was significantly downregulated following ION-CCI. Pharmacological inhibition of Kv4.3 channels with phrixotoxin-2 inhibited IA-currents in these TG neurons and induced orofacial cold hypersensitivity. On the other hand, pharmacological potentiation of Kv4.3 channels amplified IA currents in these TG neurons and alleviated orofacial cold hypersensitivity in ION-CCI rats. Collectively, Kv4.3 downregulation in nociceptive trigeminal afferent fibers may contribute to peripheral cold hypersensitivity following trigeminal nerve injury, and Kv4.3 activators may be clinically useful to alleviate trigeminal neuropathic pain.SIGNIFICANCE STATEMENT Trigeminal neuropathic pain, the most debilitating pain disorder, is often triggered and exacerbated by cooling temperatures. Here, we created infraorbital nerve chronic constrictive injury (ION-CCI) in rats, an animal model of trigeminal neuropathic pain to show that dysfunction of Kv4.3 voltage-gated K+ channels in nociceptive-like trigeminal ganglion (TG) neurons underlies the trigeminal neuropathic pain manifested with cold hypersensitivity in orofacial regions. Furthermore, we demonstrate that pharmacological potentiation of Kv4.3 channels can alleviate orofacial cold hypersensitivity in ION-CCI rats. Our results may have clinical implications in trigeminal neuropathic pain in human patients, and Kv4.3 channels may be an effective therapeutic target for this devastating pain disorder.


Assuntos
Hiperalgesia/metabolismo , Canais de Potássio Shal/metabolismo , Neuralgia do Trigêmeo/metabolismo , Animais , Temperatura Baixa , Face , Masculino , Neurônios Aferentes/metabolismo , Ratos , Ratos Sprague-Dawley
2.
Neurosci Lett ; 694: 208-214, 2019 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-30503926

RESUMO

Orofacial muscle pain is a significant clinical problem because it affects eating, speaking, and other orofacial functions in patients. However, mechanisms underlying orofacial muscle pain are not fully understood. In the present study we induced orofacial muscle pain by injecting Complete Freund's Adjuvant (CFA) into masseter muscle of rats and assessed pain by the orofacial operant test. In comparison with the control group, CFA-injected animals (CFA group) showed decreases in operant behaviors, suggesting the presence of orofacial pain. Trigeminal ganglion (TG) neurons innervating masseter muscles were retrograde-labeled with DiI and their electrophysiological properties studied using patch-clamp recordings. About 20% of DiI-labeled TG neurons showed spontaneous action potentials (APs) in the CFA group but none in the control group. AP rheobase levels were significantly lower in DiI-labeled TG neurons of the CFA group than in the control group. Membrane input resistance of DiI-labeled TG neurons was significantly higher in the CFA group than in the control group. Several other membrane parameters were also different between DiI-labeled TG neurons of the CFA and control groups. Voltage-dependent currents were examined and the most significant changes following CFA were background K+ currents, which showed significantly smaller in DiI-labeled TG neurons of CFA group compared to the control group. Collectively, orofacial muscle pain in CFA model is accompanied with changes of electrophysiological properties and background K+ currents in TG neurons that innervate masseter muscles.


Assuntos
Condicionamento Operante , Dor Facial/fisiopatologia , Músculo Masseter/fisiopatologia , Mialgia/fisiopatologia , Miosite/fisiopatologia , Neurônios/fisiologia , Gânglio Trigeminal/fisiopatologia , Potenciais de Ação , Animais , Comportamento Animal , Dor Facial/induzido quimicamente , Dor Facial/psicologia , Adjuvante de Freund/administração & dosagem , Masculino , Músculo Masseter/inervação , Mialgia/induzido quimicamente , Mialgia/psicologia , Miosite/complicações , Ratos Sprague-Dawley
3.
Neurosci Lett ; 664: 84-90, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29133175

RESUMO

Sensitivity to cooling temperatures often becomes heightened in orofacial regions leading to orofacial cold allodynia/hyperalgesia after chronic trigeminal nerve injury. KCNQ2 channels are involved in controlling excitability of primary afferent neurons and thereby regulate sensory functions under both physiological and pathological conditions. In the present study, we sought to determine whether KCNQ2 channels in trigeminal nerves are involved in regulating orofacial operant behavioral responses to cooling stimulation. We also sought to examine whether chronic trigeminal nerve injury may alter KCNQ2 channel expression in trigeminal ganglions. Using the orofacial operant tests, animals show cold allodynia/hyperalgesia in orofacial regions following infraorbital nerve chronic constrictive injury (ION-CCI), which could be alleviated by subcutaneous administration of retigabine, a KCNQ2 activator. In contrast, subcutaneous administration of the KCNQ2 inhibitor XE991 directly elicits cold allodynia/hyperalgesia in sham animals. Using immunostaining, we show that KCNQ2 channels are primarily expressed in small-sized TG neurons. Interestingly, KCNQ2 channel expression becomes significantly upregulated in TG neurons following the ION-CCI. Our results suggest that KCNQ2 channels are involved in regulating orofacial cold sensitivity. Upregulation of KCNQ2 channels may be a compensatory change in attempting to limit injury-induced trigeminal hyperexcitability.


Assuntos
Dor Facial/metabolismo , Canal de Potássio KCNQ2/metabolismo , Neuralgia/metabolismo , Gânglio Trigeminal/metabolismo , Traumatismos do Nervo Trigêmeo/metabolismo , Animais , Temperatura Baixa , Dor Facial/etiologia , Hiperalgesia , Masculino , Neuralgia/etiologia , Ratos , Ratos Sprague-Dawley , Traumatismos do Nervo Trigêmeo/complicações , Regulação para Cima
4.
Mol Pain ; 13: 1744806917724715, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28741430

RESUMO

Abstract: Neuropathic pain induced by chemotherapy drugs such as oxaliplatin is a dose-limiting side effect in cancer treatment. The mechanisms underlying chemotherapy-induced neuropathic pain are not fully understood. KCNQ2 channels are low-threshold voltage-gated K+ channels that play a role in controlling neuronal excitability. Downregulation of KCNQ2 channels has been proposed to be an underlying mechanism of sensory hypersensitivity that leads to neuropathic pain. However, it is currently unknown whether KCNQ channels may be downregulated by chemotherapy drugs in trigeminal ganglion neurons to contribute to the pathogenesis of chemotherapy-induced orofacial neuropathic pain. In the present study, mechanical sensitivity in orofacial regions is measured using the operant behavioral test in rats treated with oxaliplatin. Operant behaviors in these animals show the gradual development of orofacial neuropathic pain that manifests with orofacial mechanical allodynia. Immunostaining shows strong KCNQ2 immunoreactivity in small-sized V2 trigeminal ganglion neurons in controls, and the numbers of KCNQ2 immunoreactivity positive V2 trigeminal ganglion neurons are significantly reduced in oxaliplatin-treated animals. Immunostaining is also performed in brainstem and shows strong KCNQ2 immunoreactivity at the trigeminal afferent central terminals innervating the caudal spinal trigeminal nucleus (Vc) in controls, but the KCNQ2 immunoreactivity intensity is significantly reduced in oxaliplatin-treated animals. We further show with the operant behavioral test that oxaliplatin-induced orofacial mechanical allodynia can be alleviated by the KCNQ2 potentiator retigabine. Taken together, these findings suggest that KCNQ2 downregulation may be a cause of oxaliplatin-induced orofacial neuropathic pain and KCNQ2 potentiators may be useful for alleviating the neuropathic pain.


Assuntos
Carbamatos/farmacologia , Dor Facial/tratamento farmacológico , Canal de Potássio KCNQ2/efeitos dos fármacos , Neuralgia/tratamento farmacológico , Fenilenodiaminas/farmacologia , Gânglio Trigeminal/efeitos dos fármacos , Animais , Regulação para Baixo , Dor Facial/patologia , Hiperalgesia/tratamento farmacológico , Hiperalgesia/patologia , Masculino , Neuralgia/patologia , Neurônios/efeitos dos fármacos , Compostos Organoplatínicos/farmacologia , Oxaliplatina , Ratos Sprague-Dawley , Núcleo Inferior Caudal do Nervo Trigêmeo/efeitos dos fármacos , Núcleo Inferior Caudal do Nervo Trigêmeo/patologia , Gânglio Trigeminal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...