Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(22): 15760-15769, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36269217

RESUMO

Plastic pollution threatens both terrestrial and aquatic ecosystems. As a result of the pressures of replacing oil-based materials and reducing the accumulation of litter in the environment, the use of bioplastics is increasing, despite little being known about their accurate biodegradation in natural conditions. Here, we investigated the weight attrition and degradation behavior of four different bioplastic materials compared to conventional oil-based polyethylene during a 1-year in situ incubation in the brackish Baltic Sea and in controlled 1 month biodegradation experiments in the laboratory. Bacterial communities were also investigated to verify whether putative plastic-degrading bacteria are enriched on bioplastics. Poly-l-lactic acid showed no signs of degradation, whereas poly(3-hydroxybutyrate/3-hydroxyvalerate) (PHB/HV), plasticized starch (PR), and cellulose acetate (CA) degraded completely or almost completely during 1-year in situ incubations. In accordance, bacterial taxa potentially capable of using complex carbon substrates and belonging, e.g., to class Gammaproteobacteria were significantly enriched on PHB/HV, PR, and CA. An increase in gammaproteobacterial abundance was also observed in the biodegradation experiments. The results show substantial differences in the persistence and biodegradation rates among bioplastics, thus highlighting the need for carefully selecting materials for applications with risk of becoming marine litter.


Assuntos
Bactérias , Ecossistema , Bactérias/metabolismo , Biodegradação Ambiental , Hidroxibutiratos/metabolismo , Plásticos , Amido/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...