Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oxid Med Cell Longev ; 2021: 6650464, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349874

RESUMO

INTRODUCTION: Septic shock is a systemic inflammatory response syndrome associated with organ failures. Earlier clinical diagnosis would be of benefit to a decrease in the mortality rate. However, there is currently a lack of predictive biomarkers. The secretome is the set of proteins secreted by a cell, tissue, or organism at a given time and under certain conditions. The plasma secretome is easily accessible from biological fluids and represents a good opportunity to discover new biomarkers that can be studied with nontargeted "omic" strategies. AIMS: To identify relevant deregulated proteins (DEP) in the secretome of a rat endotoxemic shock model. METHODS: Endotoxemic shock was induced in rats by intravenous injection of lipopolysaccharides (LPS, S. enterica typhi, 0.5 mg/kg) and compared to controls (Ringer Lactate, iv). Under isoflurane anesthesia, carotid cannulation allowed mean arterial blood pressure (MAP) and heart rate (HR) monitoring and blood sampling at different time points (T0 and T50 or T0 and T90, with EDTA and protease inhibitor). Samples were prepared for large-scale tandem mass spectrometry (MS-MS) based on a label-free quantification to allow identification of the proteins deregulated upon endotoxemic conditions. A Gene Ontology (GO) analysis defined several clusters of biological processes (BP) in which the DEP are involved. RESULTS: Ninety minutes after shock induction, the LPS group presents a reduction in MAP (-45%, p < 0.05) and increased lactate levels (+27.5%, p < 0.05) compared to the control group. Proteomic analyses revealed 10 and 33 DEP in the LPS group, respectively, at 50 and 90 minutes after LPS injection. At these time points, GO-BP showed alterations in pathways involved in oxidative stress response and coagulation. CONCLUSION: This study proposes an approach to identify relevant DEP in septic shock and brings new insights into the understanding of the secretome adaptations upon sepsis.


Assuntos
Modelos Animais de Doenças , Endotoxemia/patologia , Lipopolissacarídeos/toxicidade , Proteoma/metabolismo , Secretoma , Choque Séptico/patologia , Animais , Endotoxemia/induzido quimicamente , Endotoxemia/metabolismo , Masculino , Proteoma/análise , Ratos , Ratos Wistar , Choque Séptico/induzido quimicamente , Choque Séptico/metabolismo
2.
Gene Ther ; 18(5): 462-8, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21160532

RESUMO

Once a corneal scar develops, surgical management remains the only option for visual rehabilitation. Corneal transplantation is the definitive treatment for a corneal scar. In addition to the challenges posed by graft rejections and other postoperative complications, the lack of high-quality donor corneas can limit the benefits possible with keratoplasty. The purpose of our study was to evaluate a new therapeutic strategy for treating corneal scarring by targeting collagen deposition. We overexpressed a fibril collagenase (matrix metalloproteinase 14 (MMP14)) to prevent collagen deposition in the scar tissue. We demonstrated that a single and simple direct injection of recombinant adeno-associated virus-based vector expressing murine MMP14 can modulate gene expression of murine stromal keratocytes. This tool opens new possibilities with regard to treatment. In a mouse model of corneal full-thickness incision, we observed that MMP14 overexpression reduced corneal opacity and expression of the major genes involved in corneal scarring, especially type III collagen and α-smooth muscle actin. These results represent proof of concept that gene transfer of MMP14 can reduce scar formation, which could have therapeutic applications after corneal trauma.


Assuntos
Cicatriz/terapia , Córnea/patologia , Técnicas de Transferência de Genes , Metaloproteinase 14 da Matriz/genética , Animais , Opacidade da Córnea/terapia , Dependovirus/genética , Feminino , Vetores Genéticos , Metaloproteinase 14 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Regulação para Cima , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA