Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Mol Biol Cell ; : mbcE20070445, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33956497

RESUMO

Cells polarize their growth or movement in many different physiological contexts. A key driver of polarity is the Rho GTPase Cdc42, which when activated becomes clustered or concentrated at polar sites. Multiple models for polarity establishment have been proposed. All of them rely on positive feedback to reinforce regions of high Cdc42 activity. Positive feedback can lead to bistability, a scenario in which cells can exist in either a polarized or unpolarized state under identical external conditions. Determining if the signaling circuit that drives Cdc42 polarity is bistable would provide important information about the mechanism that underlies polarity establishment and insights into the design features required for proper cellular function. We studied polarity establishment during the mating response of yeast. Using microfluidics to precisely control the temporal profile of mating pheromone and live-cell imaging to monitor the polarity process in single living cells, we found that the polarity circuit of yeast shows hysteresis, a characteristic feature of bistable systems. Our analysis also revealed that cells exposed to high pheromone concentrations rapidly lose polarity following a precipitous removal of pheromone. We used a reaction-diffusion model for polarity establishment to demonstrate that delayed negative regulation is sufficient to explain our experimental results. [Media: see text] [Media: see text] [Media: see text] [Media: see text].

3.
Sci Signal ; 14(670)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593998

RESUMO

Cells use signaling pathways to receive and process information about their environment. These nonlinear systems rely on feedback and feedforward regulation to respond appropriately to changing environmental conditions. Mathematical models describing signaling pathways often lack predictive power because they are not trained on data that encompass the diverse time scales on which these regulatory mechanisms operate. We addressed this limitation by measuring transcriptional changes induced by the mating response in Saccharomyces cerevisiae exposed to different dynamic patterns of pheromone. We found that pheromone-induced transcription persisted after pheromone removal and showed long-term adaptation upon sustained pheromone exposure. We developed a model of the regulatory network that captured both characteristics of the mating response. We fit this model to experimental data with an evolutionary algorithm and used the parameterized model to predict scenarios for which it was not trained, including different temporal stimulus profiles and genetic perturbations to pathway components. Our model allowed us to establish the role of four architectural elements of the network in regulating gene expression. These network motifs are incoherent feedforward, positive feedback, negative feedback, and repressor binding. Experimental and computational perturbations to these network motifs established a specific role for each in coordinating the mating response to persistent and dynamic stimulation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Expressão Gênica , Regulação Fúngica da Expressão Gênica , Feromônios , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
J Biol Chem ; 294(40): 14717-14731, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31399514

RESUMO

The mating pathway in yeast Saccharomyces cerevisiae has long been used to reveal new mechanisms of signal transduction. The pathway comprises a pheromone receptor, a heterotrimeric G protein, and intracellular effectors of morphogenesis and transcription. Polarized cell growth, in the direction of a potential mating partner, is accomplished by the G-protein ßγ subunits and the small G-protein Cdc42. Transcription induction, needed for cell-cell fusion, is mediated by Gßγ and the mitogen-activated protein kinase (MAPK) scaffold protein Ste5. A potential third pathway is initiated by the G-protein α subunit Gpa1. Gpa1 signaling was shown previously to involve the F-box adaptor protein Dia2 and an endosomal effector protein, the phosphatidylinositol 3-kinase Vps34. Vps34 is also required for proper vacuolar sorting and autophagy. Here, using a panel of reporter assays, we demonstrate that mating pheromone stimulates vacuolar targeting of a cytoplasmic reporter protein and that this process depends on Vps34. Through a systematic analysis of F-box deletion mutants, we show that Dia2 is required to sustain pheromone-induced vacuolar targeting. We also found that other F-box proteins selectively regulate morphogenesis (Ydr306, renamed Pfu1) and transcription (Ucc1). These findings point to the existence of a new and distinct branch of the pheromone-signaling pathway, one that likely leads to vacuolar engulfment of cytoplasmic proteins and recycling of cellular contents in preparation for mating.


Assuntos
Classe III de Fosfatidilinositol 3-Quinases/genética , Proteínas F-Box/genética , Genes Fúngicos Tipo Acasalamento/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Ciclo Celular/genética , Endossomos/genética , Proteínas F-Box/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/química , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/química , Subunidades gama da Proteína de Ligação ao GTP/genética , Morfogênese/genética , Feromônios/genética , Feromônios/metabolismo , Saccharomyces cerevisiae/fisiologia , Deleção de Sequência/genética , Transdução de Sinais , Transcrição Gênica , Vacúolos/genética , Vacúolos/metabolismo , Proteína cdc42 de Ligação ao GTP/genética
5.
Mol Biol Cell ; 26(22): 4124-34, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26310439

RESUMO

G protein-coupled receptor (GPCR) signaling is fundamental to physiological processes such as vision, the immune response, and wound healing. In the budding yeast Saccharomyces cerevisiae, GPCRs detect and respond to gradients of pheromone during mating. After pheromone stimulation, the GPCR Ste2 is removed from the cell membrane, and new receptors are delivered to the growing edge. The regulator of G protein signaling (RGS) protein Sst2 acts by accelerating GTP hydrolysis and facilitating pathway desensitization. Sst2 is also known to interact with the receptor Ste2. Here we show that Sst2 is required for proper receptor recovery at the growing edge of pheromone-stimulated cells. Mathematical modeling suggested pheromone-induced synthesis of Sst2 together with its interaction with the receptor function to reestablish a receptor pool at the site of polarized growth. To validate the model, we used targeted genetic perturbations to selectively disrupt key properties of Sst2 and its induction by pheromone. Together our results reveal that a regulator of G protein signaling can also regulate the G protein-coupled receptor. Whereas Sst2 negatively regulates G protein signaling, it acts in a positive manner to promote receptor retention at the growing edge.


Assuntos
Reguladores de Proteínas de Ligação ao GTP/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Endocitose , Modelos Biológicos , Feromônios/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Fatores de Transcrição/metabolismo
6.
Mol Biol Cell ; 26(18): 3343-58, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26179918

RESUMO

Mitogen-activated protein kinase (MAPK) pathways control many cellular processes, including differentiation and proliferation. These pathways commonly activate MAPK isoforms that have redundant or overlapping function. However, recent studies have revealed circumstances in which MAPK isoforms have specialized, nonoverlapping roles in differentiation. The mechanisms that underlie this specialization are not well understood. To address this question, we sought to establish regulatory mechanisms that are unique to the MAPK Fus3 in pheromone-induced mating and chemotropic fate transitions of the budding yeast Saccharomyces cerevisiae. Our investigations reveal a previously unappreciated role for inactive Fus3 as a potent negative regulator of pheromone-induced chemotropism. We show that this inhibitory role is dependent on inactive Fus3 binding to the α-subunit of the heterotrimeric G-protein. Further analysis revealed that the binding of catalytically active Fus3 to the G-protein is required for gradient tracking and serves to suppress cell-to-cell variability between mating and chemotropic fates in a population of pheromone-responding cells.


Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Feromônios/farmacologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Morfogênese/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
Yeast ; 29(12): 519-30, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23172645

RESUMO

Ideal reporter genes for temporal transcription programmes have short half-lives that restrict their detection to the window in which their transcripts are present and translated. In an effort to meet this criterion for reporters of transcription in individual living cells, we adapted the ubiquitin fusion strategy for programmable N-end rule degradation to generate an N-degron version of green fluorescent protein (GFP) with a half-life of ~7 min. The GFP variant we used here (designated GFP*) has excellent fluorescence brightness and maturation properties, which make the destabilized reporter well suited for tracking the induction and attenuation kinetics of gene expression in living cells. These attributes are illustrated by its ability to track galactose- and pheromone-induced transcription in S. cerevisiae. We further show that the fluorescence measurements using the short-lived N-degron GFP* reporter gene accurately predict the transient mRNA profile of the prototypical pheromone-induced FUS1 gene.


Assuntos
Genes Reporter , Proteínas de Fluorescência Verde/genética , Saccharomyces cerevisiae/genética , Transcrição Gênica , Galactose/metabolismo , Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Meia-Vida , Cinética , Proteínas de Membrana/genética , Feromônios/metabolismo , Plasmídeos , Regiões Promotoras Genéticas , RNA Fúngico/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
8.
Mol Biol Cell ; 23(19): 3899-910, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22875986

RESUMO

Different environmental stimuli often use the same set of signaling proteins to achieve very different physiological outcomes. The mating and invasive growth pathways in yeast each employ a mitogen-activated protein (MAP) kinase cascade that includes Ste20, Ste11, and Ste7. Whereas proper mating requires Ste7 activation of the MAP kinase Fus3, invasive growth requires activation of the alternate MAP kinase Kss1. To determine how MAP kinase specificity is achieved, we used a series of mathematical models to quantitatively characterize pheromone-stimulated kinase activation. In accordance with the computational analysis, MAP kinase feedback phosphorylation of Ste7 results in diminished activation of Kss1, but not Fus3. These findings reveal how feedback phosphorylation of a common pathway component can limit the activity of a competing MAP kinase through feedback phosphorylation of a common activator, and thereby promote signal fidelity.


Assuntos
Retroalimentação Fisiológica , Sistema de Sinalização das MAP Quinases , Modelos Biológicos , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/metabolismo , Algoritmos , Simulação por Computador , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Método de Monte Carlo , Dinâmica não Linear , Fosforilação , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Mol Syst Biol ; 8: 586, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22669614

RESUMO

All cells must detect and respond to changes in their environment, often through changes in gene expression. The yeast pheromone pathway has been extensively characterized, and is an ideal system for studying transcriptional regulation. Here we combine computational and experimental approaches to study transcriptional regulation mediated by Ste12, the key transcription factor in the pheromone response. Our mathematical model is able to explain multiple counterintuitive experimental results and led to several novel findings. First, we found that the transcriptional repressors Dig1 and Dig2 positively affect transcription by stabilizing Ste12. This stabilization through protein-protein interactions creates a large pool of Ste12 that is rapidly activated following pheromone stimulation. Second, we found that protein degradation follows saturating kinetics, explaining the long half-life of Ste12 in mutants expressing elevated amounts of Ste12. Finally, our model reveals a novel mechanism for robust perfect adaptation through protein-protein interactions that enhance complex stability. This mechanism allows the transcriptional response to act on a shorter time scale than upstream pathway activity.


Assuntos
Regulação Fúngica da Expressão Gênica , Modelos Biológicos , Feromônios/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Modelos Genéticos , Mutação , Feromônios/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Sci Signal ; 4(186): ra54, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21868361

RESUMO

The maintenance and detection of signaling gradients are critical for proper development and cell migration. In single-cell organisms, gradient detection allows cells to orient toward a distant mating partner or nutrient source. Budding yeast expand their growth toward mating pheromone gradients through a process known as chemotropic growth. MATα cells secrete α-factor pheromone that stimulates chemotropism and mating differentiation in MATa cells and vice versa. Paradoxically, MATa cells secrete Bar1, a protease that degrades α-factor and that attenuates the mating response, yet is also required for efficient mating. We observed that MATa cells avoid each other during chemotropic growth. To explore this behavior, we developed a computational platform to simulate chemotropic growth. Our simulations indicated that the release of Bar1 enabled individual MATa cells to act as α-factor sinks. The simulations suggested that the resultant local reshaping of pheromone concentration created gradients that were directed away from neighboring MATa cells (self-avoidance) and that were increasingly amplified toward partners of the opposite sex during elongation. The behavior of Bar1-deficient cells in gradient chambers and mating assays supported these predictions from the simulations. Thus, budding yeast dynamically remodel their environment to ensure productive responses to an external stimulus and avoid nonproductive cell-cell interactions.


Assuntos
Peptídeos/metabolismo , Proteólise , Saccharomyces cerevisiae/metabolismo , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Fator de Acasalamento , Peptídeos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Mol Cell ; 30(5): 649-56, 2008 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-18538663

RESUMO

Cell differentiation requires the ability to detect and respond appropriately to a variety of extracellular signals. Here we investigate a differentiation switch induced by changes in the concentration of a single stimulus. Yeast cells exposed to high doses of mating pheromone undergo cell division arrest. Cells at intermediate doses become elongated and divide in the direction of a pheromone gradient (chemotropic growth). Either of the pheromone-responsive MAP kinases, Fus3 and Kss1, promotes cell elongation, but only Fus3 promotes chemotropic growth. Whereas Kss1 is activated rapidly and with a graded dose-response profile, Fus3 is activated slowly and exhibits a steeper dose-response relationship (ultrasensitivity). Fus3 activity requires the scaffold protein Ste5; when binding to Ste5 is abrogated, Fus3 behaves like Kss1, and the cells no longer respond to a gradient or mate efficiently with distant partners. We propose that scaffold proteins serve to modulate the temporal and dose-response behavior of the MAP kinase.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Diferenciação Celular/efeitos dos fármacos , Ativação Enzimática , Feromônios/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento
12.
Biophys J ; 94(6): 2017-26, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18065460

RESUMO

Fluorescent proteins are often used as reporters of transcriptional activity. Here we present a mathematical characterization of a novel fluorescent reporter that was recently engineered to have a short half-life (approximately 12 min). The advantage of this destabilized protein is that it can track the transient transcriptional response often exhibited by signaling pathways. Our mathematical model takes into account the maturation time and half-life of the fluorescent protein. We demonstrate that our characterization allows transient transcript profiles to be inferred from fluorescence data. We also investigate a stochastic version of the model. Our analysis reveals that fluorescence measurements can both underestimate and overestimate fluctuations in protein levels that arise from the stochastic nature of biochemical reactions.


Assuntos
Perfilação da Expressão Gênica/métodos , Proteínas de Fluorescência Verde/química , Transcrição Gênica , Bioquímica/métodos , Perfilação da Expressão Gênica/instrumentação , Genes Reporter , Cinética , Modelos Químicos , Modelos Estatísticos , Modelos Teóricos , Proteínas/química , RNA Mensageiro/metabolismo , Transdução de Sinais , Processos Estocásticos , Fatores de Tempo
13.
Eukaryot Cell ; 5(12): 2147-60, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17041188

RESUMO

The Ste12 transcription factor of Saccharomyces cerevisiae regulates transcription programs controlling two different developmental fates. One is differentiation into a mating-competent form that occurs in response to mating pheromone. The other is the transition to a filamentous-growth form that occurs in response to nutrient deprivation. These two distinct roles for Ste12 make it a focus for studies into regulatory mechanisms that impart biological specificity. The transient signal characteristic of mating differentiation led us to test the hypothesis that regulation of Ste12 turnover might contribute to attenuation of the mating-specific transcription program and restrict activation of the filamentation program. We show that prolonged pheromone induction leads to ubiquitin-mediated destabilization and decreased amounts of Ste12. This depletion in pheromone-stimulated cultures is dependent on the mating-pathway-dedicated mitogen-activated protein kinase Fus3 and its target Cdc28 inhibitor, Far1. Attenuation of pheromone-induced mating-specific gene transcription (FUS1) temporally correlates with Ste12 depletion. This attenuation is abrogated in the deletion backgrounds (fus3Delta or far1Delta) where Ste12 is found to persist. Additionally, pheromone induces haploid invasion and filamentous-like growth instead of mating differentiation when Ste12 levels remain high. These observations indicate that loss of Ste12 reinforces the adaptive response to pheromone and contributes to the curtailing of a filamentation response.


Assuntos
Peptídeos/farmacologia , Proteínas de Saccharomyces cerevisiae/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Bases , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina , DNA Fúngico/genética , Genes Fúngicos , Haploidia , Fator de Acasalamento , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética , Transcrição Gênica , Ubiquitina/metabolismo
14.
Yeast ; 23(5): 333-49, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16598699

RESUMO

The 'programmable' features of the N-end rule degradation pathway and a ubiquitin fusion strategy were exploited to create a family of destabilized cyan fluorescent proteins (CFP) to be used as transcriptional reporters. The N-degron CFP reporters characterized in this report have half-lives of approximately 75, 50 and 5 min, but further modification of the N-degron signal sequences could readily generate additional variants within this range. These destabilized CFP reporters have been engineered into convenient plasmid constructs with features to enable their expression from upstream activating sequences of choice and to facilitate their targeted integration to the URA3-TIM9 intergenic region of chromosome V. The advantages and limitations of these reporters as temporal indicators of gene expression in living cells are illustrated by their application as reporters of galactose- and pheromone-induced transcription. The plasmid design we describe and the range of different stabilities that are theoretically feasible with this strategy make the N-degron CFP reporters easily adapted to a variety of applications.


Assuntos
Genes Reporter/genética , Proteínas de Fluorescência Verde/genética , Saccharomyces cerevisiae/genética , Transcrição Gênica/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Northern Blotting , Western Blotting , Cromossomos Fúngicos/genética , DNA Fúngico/genética , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Galactoquinase/genética , Regulação Fúngica da Expressão Gênica , Genes Reporter/fisiologia , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutagênese Insercional , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica/fisiologia
15.
Mol Cell Biol ; 24(20): 9221-38, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15456892

RESUMO

Mitogen-activated protein kinase kinase kinase-Ste11 (MAPKKK-Ste11), MAPKK-Ste7, and MAPK-Kss1 mediate pheromone-induced mating differentiation and nutrient-responsive invasive growth in Saccharomyces cerevisiae. The mating pathway also requires the scaffold-Ste5 and the additional MAPK-Fus3. One contribution to specificity in this system is thought to come from stimulus-dependent recruitment of the MAPK cascade to upstream activators that are unique to one or the other pathway. To test this premise, we asked if stimulus-independent signaling by constitutive Ste7 would lead to a loss of biological specificity. Instead, we found that constitutive Ste7 promotes invasion without supporting mating responses. This specificity occurs because constitutive Ste7 activates Kss1, but not Fus3, in vivo and promotes filamentation gene expression while suppressing mating gene expression. Differences in the ability of constitutive Ste7 variants to bind the MAPKs and Ste5 account for the selective activation of Kss1. These findings support the model that Fus3 activation in vivo requires binding to both Ste7 and the scaffold-Ste5 but that Kss1 activation is independent of Ste5. This scaffold-independent activation of Kss1 by constitutive Ste7 and the existence of mechanisms for pathway-specific promoter discrimination impose a unique developmental fate independently of any distinguishing external stimuli.


Assuntos
Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ativação Enzimática , Retroalimentação Fisiológica , Regulação Fúngica da Expressão Gênica , Genes Reporter , Isoenzimas/genética , Isoenzimas/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/genética , Fenótipo , Feromônios/metabolismo , Fosforilação , Proteínas Quinases/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/metabolismo
16.
J Biol Chem ; 278(25): 22284-9, 2003 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-12668671

RESUMO

Ste7 is a mitogen-activated protein kinase kinase that mediates pheromone signaling in Saccharomyces cerevisiae. We showed previously that Ste7 is ubiquitinated upon prolonged stimulation by pheromone and that accumulation of ubiquitinated Ste7 results in enhanced transcription and cell division arrest responses (Wang, Y., and Dohlman, H. G. (2002) J. Biol. Chem. 277, 15766-15772). We now report that ubiquitination of Ste7 requires Ste11 kinase and Skp1/Cullin/F-box (SCF) ubiquitin-conjugating activities. Ste7 is not ubiquitinated in Ste11-deficient cells or when the Ste11 phosphorylation sites have been mutated. Ste7 ubiquitination and degradation (but not phosphorylation) is specifically blocked in mutants defective for the E2 ubiquitin-conjugating enzyme Cdc34 or the cullin homologue Cdc53. Both are components of the SCF complex that ubiquitinates proteins during the G1-S transition of the cell cycle. Our findings suggest that SCF promotes the ubiquitination and degradation of Ste7, thereby favoring the resumption of cell division cycling after pheromone-induced growth arrest.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina/metabolismo , Proteínas de Ciclo Celular/genética , Genótipo , Ligases/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno , Feromônios/farmacologia , Feromônios/fisiologia , Plasmídeos , Proteínas Quinases/genética , Proteínas Quinases Associadas a Fase S , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Schizosaccharomyces pombe/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...