Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38330915

RESUMO

Van der Waals (vdW) magnets are promising, because of their tunable magnetic properties with doping or alloy composition, where the strength of magnetic interactions, their symmetry, and magnetic anisotropy can be tuned according to the desired application. However, so far, most of the vdW magnet-based spintronic devices have been limited to cryogenic temperatures with magnetic anisotropies favoring out-of-plane or canted orientation of the magnetization. Here, we report beyond room-temperature lateral spin-valve devices with strong in-plane magnetization and spin polarization of the vdW ferromagnet (Co0.15Fe0.85)5GeTe2 (CFGT) in heterostructures with graphene. Density functional theory (DFT) calculations show that the magnitude of the anisotropy depends on the Co concentration and is caused by the substitution of Co in the outermost Fe layer. Magnetization measurements reveal the above room-temperature ferromagnetism in CFGT and clear remanence at room temperature. Heterostructures consisting of CFGT nanolayers and graphene were used to experimentally realize basic building blocks for spin valve devices, such as efficient spin injection and detection. Further analysis of spin transport and Hanle spin precession measurements reveals a strong in-plane magnetization with negative spin polarization at the interface with graphene, which is supported by the calculated spin-polarized density of states of CFGT. The in-plane magnetization of CFGT at room temperature proves its usefulness in graphene lateral spin-valve devices, thus revealing its potential application in spintronic technologies.

2.
Chem Commun (Camb) ; 59(15): 2106-2109, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36723213

RESUMO

A manganese(II) metal-organic framework based on the hexatopic hexakis(4-carboxyphenyl)benzene, cpb6-: [Mn3(cpb)(dmf)3], was solvothermally prepared showing a Langmuir area of 438 m2 g-1, rapid uptake OF sulfur hexafluoride (SF6) as well as electrochemical and magnetic properties, while single crystal diffraction reveals an unusual rod-MOF topology.

3.
Adv Mater ; 35(16): e2209113, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36641649

RESUMO

The discovery of van der Waals (vdW) magnets opened a new paradigm for condensed matter physics and spintronic technologies. However, the operations of active spintronic devices with vdW ferromagnets are limited to cryogenic temperatures, inhibiting their broader practical applications. Here, the robust room-temperature operation of lateral spin-valve devices using the vdW itinerant ferromagnet Fe5 GeTe2 in heterostructures with graphene is demonstrated. The room-temperature spintronic properties of Fe5 GeTe2 are measured at the interface with graphene with a negative spin polarization. Lateral spin-valve and spin-precession measurements provide unique insights by probing the Fe5 GeTe2 /graphene interface spintronic properties via spin-dynamics measurements, revealing multidirectional spin polarization. Density functional theory calculations in conjunction with Monte Carlo simulations reveal significantly canted Fe magnetic moments in Fe5 GeTe2 along with the presence of negative spin polarization at the Fe5 GeTe2 /graphene interface. These findings open opportunities for vdW interface design and applications of vdW-magnet-based spintronic devices at ambient temperatures.

4.
J Phys Chem Lett ; 13(22): 4877-4883, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35617439

RESUMO

Recent experiments on Fe5GeTe2 suggested the presence of a symmetry breaking of its conventional crystal structure. Here, using density functional theory calculations, we elucidate that the stabilization of the (√3 × âˆš3)R30° supercell structure is caused by the swapping of Fe atoms occurring in the monolayer limit. The swapping to the vicinity of Te atoms is facilitated by the spontaneous occurrence of Fe vacancy and its low diffusion barrier. Our calculated magnetic exchange parameters show the simultaneous presence of ferromagnetic and antiferromagnetic exchange among a particular type of Fe atom. The Fe sublattice projected magnetization obtained from Monte Carlo simulations clearly demonstrates an exotic temperature-dependent behavior of this Fe type along with a large canting angle at T = 0 K, indicating the presence of a complex noncollinear magnetic order. We propose that the low-temperature crystal structure results from the swapping between two sublattices of Fe, giving rise to peculiar magnetization obtained in experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...