Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Saudi Dent J ; 35(8): 960-968, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38107047

RESUMO

Background: Periodontal disease is common in both developed and developing countries and affects around 20-50% of the global population, especially in adolescents, adults and the elderly is a public health problem. ADMSCs have the advantage of regenerating damaged tissue with high quality. DDM in the form of slices can improve healing in the mandibular sockets of molar teeth. The combination of ADMSC-DDM is expected to accelerate bone regeneration. Objectives: To analyze the combination of ADMSCs-DDM at increasing bone marker expression in periodontitis rats. Methods: This research is experimental with a randomized control group post-test-only design. A total of 50 male Wistar rats were divided into four groups: 1) normal group (K); 2) CP model (K + ); 3) CP model and treated with DDM scaffold therapy (K(s)); 4) CP model and treated with ADMSCs-DDM combination therapy (K(sc)). Making a CP model with injected LPS P. gingivalis into interproximal gingiva of the right first and second lower molars. The in vivo research stage was the implantation of the DDM scaffold and the ADMSCs-DDM combination in the rat periodontal pocket. Rats were euthanized on days 7, 14, and 28, and immunohistochemistry of STRO-1, RUNX-2, OSX, COL-I, and OCN was performed. DDM scaffolds are made in 10%, 50% and 100% concentrations for MTT testing. Statistical results were analyzed with Kruskal-Wallis and Mann-Whitney tests. Results: The results of the MTT scaffold DDM were significant in the 10%, 50%, and 100% dilution groups (p < 0.05). The results showed there was a substantial difference in the expression of STRO-1 between the study groups (p < 0.05). The (K(sc)) was significantly higher than the (K) in RUNX-2 expression (p < 0.05). OSX expression showed significant results between study groups (p < 0.05). The expression of OCN and COL-I showed a significant difference in all study groups on day 28, where the (K(sc)) was higher than the (K) (p < 0.05). Conclusions: Administration of the ADMSCs-DDM combination can accelerate alveolar bone regeneration on day 28. There is a mechanism of alveolar bone regeneration through the STRO-1, RUNX-2, OSX, and the COL-I pathway in periodontitis models.

2.
PLoS One ; 16(6): e0252302, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34143818

RESUMO

A potent therapy for the infectious coronavirus disease COVID-19 is urgently required with, at the time of writing, research in this area still ongoing. This study aims to evaluate the in vitro anti-viral activities of combinations of certain commercially available drugs that have recently formed part of COVID-19 therapy. Dual combinatory drugs, namely; Lopinavir-Ritonavir (LOPIRITO)-Clarithromycin (CLA), LOPIRITO-Azithromycin (AZI), LOPIRITO-Doxycycline (DOXY), Hydroxychloroquine (HCQ)-AZI, HCQ-DOXY, Favipiravir (FAVI)-AZI, HCQ-FAVI, and HCQ-LOPIRITO, were prepared. These drugs were mixed at specific ratios and evaluated for their safe use based on the cytotoxicity concentration (CC50) values of human umbilical cord mesenchymal stem cells. The anti-viral efficacy of these combinations in relation to Vero cells infected with SARS-CoV-2 virus isolated from a patient in Universitas Airlangga hospital, Surabaya, Indonesia and evaluated for IC50 24, 48, and 72 hours after viral inoculation was subsequently determined. Observation of the viral load in qRT-PCR was undertaken, the results of which indicated the absence of high levels of cytotoxicity in any samples and that dual combinatory drugs produced lower cytotoxicity than single drugs. In addition, these combinations demonstrated considerable effectiveness in reducing the copy number of the virus at 48 and 72 hours, while even at 24 hours, post-drug incubation resulted in low IC50 values. Most combination drugs reduced pro-inflammatory markers, i.e. IL-6 and TNF-α, while increasing the anti-inflammatory response of IL-10. According to these results, the descending order of effective dual combinatory drugs is one of LOPIRITO-AZI>LOPIRITO-DOXY>HCQ-AZI>HCQ-FAVI>LOPIRITO-CLA>HCQ-DOX. It can be suggested that dual combinatory drugs, e.g. LOPIRITO-AZI, can potentially be used in the treatment of COVID-19 infectious diseases.


Assuntos
Antibacterianos/farmacologia , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Hidroxicloroquina/farmacologia , SARS-CoV-2/efeitos dos fármacos , Animais , Antibacterianos/uso terapêutico , Antivirais/uso terapêutico , COVID-19/virologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Chlorocebus aethiops , Combinação de Medicamentos , Hospitalização , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Hidroxicloroquina/uso terapêutico , Indonésia , Concentração Inibidora 50 , Pacientes Internados , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/fisiologia , Fatores de Tempo , Células Vero , Carga Viral/efeitos dos fármacos
3.
Biochem Res Int ; 2021: 6685921, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33628506

RESUMO

BACKGROUND: At the present time, COVID-19 vaccines are at the testing stage, and an effective treatment for COVID-19 incorporating appropriate safety measures remains the most significant obstacle to be overcome. A strategic countermeasure is, therefore, urgently required. AIM: This study aims to evaluate the efficacy and safety of a combination of lopinavir/ritonavir-azithromycin, lopinavir/ritonavir-doxycycline, and azithromycin-hydroxychloroquine used to treat patients with mild to moderate COVID-19 infections. Setting and Design. This study was conducted at four different clinical study sites in Indonesia. The subjects gave informed consent for their participation and were confirmed as being COVID-19-positive by means of an RT-PCR test. The present study constituted a randomized, double-blind, and multicenter clinical study of patients diagnosed with mild to moderate COVID-19 infection. MATERIALS AND METHODS: Six treatment groups participated in this study: a Control group administered with a 500 mg dose of azithromycin; Group A which received a 200/50 mg dose of lopinavir/ritonavir and 500 mg of azithromycin; Group B treated with a 200/50 mg dose of lopinavir/ritonavir and 200 mg of doxycycline; Group C administered with 200 mg of hydroxychloroquine and 500 mg of azithromycin; Group D which received a 400/100 mg dose of lopinavir/ritonavir and 500 mg of azithromycin; and Group E treated with a 400/100 mg dose of lopinavir/ritonavir and 200 mg of doxycycline. RESULTS: 754 subjects participated in this study: 694 patients (92.4%) who presented mild symptoms and 57 patients (7.6%) classified as suffering from a moderate case of COVID-19. On the third day after treatment, 91.7%-99.2% of the subjects in Groups A-E were confirmed negative by a PCR swab test compared to 26.9% in the Control group. Observation of all groups which experienced a significant decrease in virus load between day 1 and day 7 was undertaken. Other markers, such as CRP and IL-6, were significantly lower in all treatment groups (p < 0.05 and p < 0.0001) than in the Control group. Furthermore, IL-10 and TNF-α levels were significantly elevated in all treatment groups (p < 0.0001). The administration of azithromycin to the Control group increased CRP and IL-6 levels, while reduced IL-10 and TNF-α on day 7 (p < 0.0001) compared with day 1. Decreases in ALT and AST levels were observed in all groups (p < 0.0001). There was an increase in creatinine in the serum level of the Control, C, D, and E groups (p < 0.05), whereas the BUN level was elevated in all groups (p < 0.0001). CONCLUSIONS: The study findings suggest that the administration of lopinavir/ritonavir-doxycycline, lopinavir/ritonavir-azithromycin, and azithromycin-hydroxychloroquine as a dual drug combination produced a significantly rapid PCR conversion rate to negative in three-day treatment of mild to moderate COVID-19 cases. Further studies should involve observation of older patients with severe clinical symptoms in order to collate significant amounts of demographic data.

4.
Vet World ; 13(10): 2097-2103, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33281342

RESUMO

BACKGROUND AND AIM: A skin wound in an animal must be cared for to prevent further health issues. Platelet-rich fibrin (PRF) and skin-derived mesenchymal stem cells (SMSCs) have been reported to have potential in increasing the rate of wound healing. This study aimed to analyze the distribution patterns and levels of platelet-derived growth factor (PDGF), insulin-like growth factor (IGF), vascular endothelial growth factor (VEGF), and transforming growth factor-ß (TGF-ß) in PRF incorporated with SMSCs. MATERIALS AND METHODS: This study employed a true experiment (in vitro) design with post-test only performed in the control group alone. PRF and SMSCs were extracted from the blood and skin of 16 rabbits. SMSCs were characterized using immunocytochemistry to examine clusters of differentiation for 45, 73, 90, and 105. PRF was incorporated into the SMSCs and then divided into four groups (N=32/n=8): Group A (PRF only), Group B (PRF+SMSCs, incubated for 1 day), Group C (PRF+SMSCs, incubated for 3 days), and Group D (PRF+SMSCs, incubated for 5 days). Scanning electron microscopy was used to examine the distribution pattern of SMSCs between groups. The supernatant serum (Group A) and supernatant medium culture (Group D) were collected for the measurement of PDGF, IGF, VEGF, and TGF-ß using an enzyme-linked immunosorbent assay sandwich kit. An unpaired t-test was conducted to analyze the differences between Groups A and D (p<0.01). RESULTS: Group D had the most morphologically visible SMSCs attached to the PRF, with elongated and pseudopodia cells. There was a significant difference between the levels of growth factor in Groups A and D (p=0.0001; p<0.01). CONCLUSION: SMSCs were able to adhere to and distribute evenly on the surface of PRF after 5 days of incubation. The PRF incorporated SMSCs contained high levels of PDGF, IGF, VEGF, and TGF- ß, which may prove to have potential in enhancing wound healing.

5.
Eur J Dent ; 13(3): 432-436, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31795007

RESUMO

OBJECTIVE: Medicinal signaling cells metabolite (MSCM) is often considered medical waste even though it contains abundant growth factors, and advantageous micro- and macromolecules that can accelerate healing in oral ulcer.The purpose of this experimental laboratory study was to analyze the biocompatibility and potential of MSCM, (oral based) to accelerate healing in oral ulcer (in vitro). MATERIALS AND METHODS: MSCM (oral based) was obtained by mixing 10 mL of MSCM and 2% of carboxymethyl cellulose sodium. 3- (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (or MTT assay) was obtained using human gingival somatic cell culture to examine cell viability treated with MSCM (oral based). Fourier transform infrared spectroscopy was performed to know the functional structure and composition of MSCM (oral based). To know the elemental composition of MSCM (oral based), energy-dispersive X-ray analysis was performed. Scratch test was performed to know the ability of MSCM (oral based) to increase human somatic cell proliferation. RESULTS: MSCM (oral based) has good cell viability. MSCM (oral based) administration accelerated the proliferation of human somatic cell culture after 12-hours in vitro. MSCM (oral based) has carboxylic acids and derivatives chemical bond. MSCM (oral based) mostly contained carbon and potassium but did not contain heavy metal substances. CONCLUSIONS: MSCM (oral based) has a biocompatible and potential ability to accelerate healing in oral ulcer in vitro. It would be useful in daily clinical practice in treating traumatic oral ulcer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...