Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 188(3): 1483-1495, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34865155

RESUMO

In the wild cruciferous wintercress (Barbarea vulgaris), ß-amyrin-derived saponins are involved in resistance against insect herbivores like the major agricultural pest diamondback moth (Plutella xylostella). Enzymes belonging to the 2,3-oxidosqualene cyclase family have been identified and characterized in B. vulgaris G-type and P-type plants that differ in their natural habitat, insect resistance and saponin content. Both G-type and P-type plants possess highly similar 2,3-oxidosqualene cyclase enzymes that mainly produce ß-amyrin (Barbarea vulgaris Lupeol synthase 5 G-Type; BvLUP5-G) or α-amyrin (Barbarea vulgaris Lupeol synthase 5 P-Type; BvLUP5-P), respectively. Despite the difference in product formation, the two BvLUP5 enzymes are 98% identical at the amino acid level. This provides a unique opportunity to investigate determinants of product formation, using the B. vulgaris 2,3-oxidosqualene cyclase enzymes as a model for studying amino acid residues that determine differences in product formation. In this study, we identified two amino acid residues at position 121 and 735 that are responsible for the dominant changes in generated product ratios of ß-amyrin and α-amyrin in both BvLUP5 enzymes. These amino acid residues have not previously been highlighted as directly involved in 2,3-oxidosqualene cyclase product specificity. Our results highlight the functional diversity and promiscuity of 2,3-oxidosqualene cyclase enzymes. These enzymes serve as important mediators of metabolic plasticity throughout plant evolution.


Assuntos
Barbarea/genética , Barbarea/metabolismo , Barbarea/parasitologia , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Ácido Oleanólico/metabolismo , Extratos Vegetais/farmacologia , Animais , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Herbivoria/efeitos dos fármacos , Controle de Insetos , Mariposas/efeitos dos fármacos , Mutação , Ácido Oleanólico/análogos & derivados
2.
Plant Mol Biol ; 97(1-2): 37-55, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29603041

RESUMO

KEY MESSAGE: This study identifies six UGT73Cs all able to glucosylate sapogenins at positions 3 and/or 28 which demonstrates that B. vulgaris has a much richer arsenal of UGTs involved in saponin biosynthesis than initially anticipated. The wild cruciferous plant Barbarea vulgaris is resistant to some insects due to accumulation of two monodesmosidic triterpenoid saponins, oleanolic acid 3-O-ß-cellobioside and hederagenin 3-O-ß-cellobioside. Insect resistance depends on the structure of the sapogenin aglycone and the glycosylation pattern. The B. vulgaris saponin profile is complex with at least 49 saponin-like metabolites, derived from eight sapogenins and including up to five monosaccharide units. Two B. vulgaris UDP-glycosyltransferases, UGT73C11 and UGT73C13, O-glucosylate sapogenins at positions 3 and 28, forming mainly 3-O-ß-D-glucosides. The aim of this study was to identify UGTs responsible for the diverse saponin oligoglycoside moieties observed in B. vulgaris. Twenty UGT genes from the insect resistant genotype were selected and heterologously expressed in Nicotiana benthamiana and/or Escherichia coli. The extracts were screened for their ability to glycosylate sapogenins (oleanolic acid, hederagenin), the hormone 24-epibrassinolide and sapogenin monoglucosides (hederagenin and oleanolic acid 3-O-ß-D-glucosides). Six UGTs from the UGT73C subfamily were able to glucosylate both sapogenins and both monoglucosides at positions 3 and/or 28. Some UGTs formed bisdesmosidic saponins efficiently. At least four UGT73C genes were localized in a tandem array with UGT73C11 and possibly UGT73C13. This organization most likely reflects duplication events followed by sub- and neofunctionalization. Indeed, signs of positive selection on several amino acid sites were identified and modelled to be localized on the UGT protein surface. This tandem array is proposed to initiate higher order bisdesmosidic glycosylation of B. vulgaris saponins, leading to the recently discovered saponin structural diversity, however, not directly to known cellobiosidic saponins.


Assuntos
Barbarea/enzimologia , Glicosiltransferases/isolamento & purificação , Sapogeninas/metabolismo , Saponinas/biossíntese , Barbarea/genética , Barbarea/metabolismo , Brassinosteroides/metabolismo , Escherichia coli/genética , Genes de Plantas , Glicosídeos/metabolismo , Glicosilação , Glicosiltransferases/química , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Modelos Moleculares , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/metabolismo , Saponinas/química , Saponinas/isolamento & purificação , Esteroides Heterocíclicos/metabolismo , Sequências de Repetição em Tandem , Nicotiana/genética , Transcriptoma
3.
Sci Rep ; 7: 40728, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28094805

RESUMO

The genus Barbarea has emerged as a model for evolution and ecology of plant defense compounds, due to its unusual glucosinolate profile and production of saponins, unique to the Brassicaceae. One species, B. vulgaris, includes two 'types', G-type and P-type that differ in trichome density, and their glucosinolate and saponin profiles. A key difference is the stereochemistry of hydroxylation of their common phenethylglucosinolate backbone, leading to epimeric glucobarbarins. Here we report a draft genome sequence of the G-type, and re-sequencing of the P-type for comparison. This enables us to identify candidate genes underlying glucosinolate diversity, trichome density, and study the genetics of biochemical variation for glucosinolate and saponins. B. vulgaris is resistant to the diamondback moth, and may be exploited for "dead-end" trap cropping where glucosinolates stimulate oviposition and saponins deter larvae to the extent that they die. The B. vulgaris genome will promote the study of mechanisms in ecological biochemistry to benefit crop resistance breeding.


Assuntos
Barbarea/genética , Genoma de Planta , Genômica , Barbarea/química , Barbarea/classificação , Barbarea/metabolismo , Biologia Computacional/métodos , Resistência à Doença/genética , Variação Genética , Genômica/métodos , Glucosinolatos/metabolismo , Metaboloma , Metabolômica/métodos , Anotação de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Característica Quantitativa Herdável , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...