Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 156: 20-25, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32522584

RESUMO

Previous research has identified variation in cancer cell line response to high levels of extracellular H2O2 (eH2O2) exposure. This directly contributes to our understanding cellular efficacy of pharmacological ascorbate (P-AscH-) therapy. Here we investigate the factors contributing to latency of peroxisomal catalase of a cell and the importance of latency in evaluating cell exposure to eH2O2. First, we develop a mathematical framework for the latency of catalase in terms of an effectiveness factor, ηeff, to describe the catalase activity in the presence of high levels of eH2O2. A simplified relationship emerges, [Formula: see text] when mprp/Dij≪1, where mp,rp, and [Formula: see text] are the experimentally determined peroxisome permeability, average peroxisome radius, and the pseudo first-order reaction rate constant, respectively. [Formula: see text] is the catalase concentration in the peroxisome and k2=1.7x107M-1s-1. Next, previously published parameters are used to determine the latency effect of the cell lines: normal pancreatic cells (H6c7), pancreatic cancer cells (MIA PaCa-2), and glioblastoma cells (LN-229, T98G, and U-87), all which vary in their susceptibility to exposure to high eH2O2. The results show that effectiveness is not significantly different except for the most susceptible, MIA PaCa-2 cell line, which is higher when compared to all other cell lines. This result is counterintuitive and further implies that latency, as a single parameter, is ineffective in forecasting cell line susceptibility to P-AscH- therapy equivalent eH2O. Thus, further research remains necessary to identify why cancer cells vary in susceptibility to P-AscH- therapy.


Assuntos
Antineoplásicos , Glioblastoma , Neoplasias Pancreáticas , Antineoplásicos/uso terapêutico , Catalase , Linhagem Celular , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Humanos , Peróxido de Hidrogênio , Neoplasias Pancreáticas/tratamento farmacológico
2.
Sensors (Basel) ; 20(9)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32366013

RESUMO

Glaucoma, the leading cause of irreversible blindness, affects >70 million people worldwide. Lowering intraocular pressure via topical administration of eye drops is the most common first-line therapy for glaucoma. This treatment paradigm has notoriously high non-adherence rates: ranging from 30% to 80%. The advent of smart phone enabled technologies creates promise for improving eyedrop adherence. However, previous eyedrop electronic monitoring solutions had awkward medication bottle adjuncts and crude software for monitoring the administration of a drop that adversely affected their ability to foster sustainable improvements in adherence. The current work begins to address this unmet need for wireless technology by creating a "smart drop" bottle. This medication bottle is instrumented with sensing electronics that enable detection of each eyedrop administered while maintaining the shape and size of the bottle. This is achieved by a thin electronic force sensor wrapped around the bottle and underneath the label, interfaced with a thin electronic circuit underneath the bottle that allows for detection and wireless transmission to a smart-phone application. We demonstrate 100% success rate of wireless communication over 75 feet with <1% false positive and false negative rates of single drop deliveries, thus providing a viable solution for eyedrop monitoring for glaucoma patients.


Assuntos
Glaucoma , Adesão à Medicação , Eletrônica , Glaucoma/tratamento farmacológico , Humanos , Pressão Intraocular , Soluções Oftálmicas
3.
Free Radic Biol Med ; 120: 356-367, 2018 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-29601946

RESUMO

The high extracellular hydrogen peroxide (H2O2) concentrations generated during pharmacological ascorbate (P-AscH-) therapy has been shown to exhibit a high flux into susceptible cancer cells leading to a decrease in clonogenic survival. It is hypothesized that the intracellular H2O2 concentration for susceptibility is independent of cell type and that the variation observed in dosing is associated with differences in the cell-specific overall steady-state intracellular H2O2 concentration values. The steady-state variation in intracellular H2O2 concentration is coupled to a number of cellular specific transport and reaction factors including catalase activity and membrane permeability. Here a lumped-parameter mathematical modeling approach, assuming a catalase-dominant peroxide removal mechanism, is used to calculate intracellular H2O2 concentration for several cell lines. Experimental measurements of critical parameters pertaining to the model are obtained. The cell lines investigated are normal pancreatic cells, H6c7, the pancreatic cancer cell line, MIA PaCa-2 and the glioblastoma cell lines, LN-229, T98G, and U-87; all which vary in susceptibility. The intracellular H2O2 concentration estimates are correlated with the clonogenic surviving fraction for each cell line, in-vitro. The results showed that, despite the fact that the experimental parameters including catalase concentration and plasma membrane permeability demonstrated significant variability across cell lines, the calculated steady-state intracellular to extracellular H2O2 concentration ratio did not vary significantly across cell lines. Thus, the calculated intracellular H2O2 concentration is not unique in characterizing susceptibility. These results imply that, although intracellular H2O2 concentration plays a key role in cellular susceptibility to P-AscH- adjuvant therapy, its overall contribution in a unifying mechanism across cell types is complex.


Assuntos
Antineoplásicos/farmacologia , Ácido Ascórbico/farmacologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Peróxido de Hidrogênio/análise , Modelos Teóricos , Linhagem Celular Tumoral , Humanos
4.
PLoS One ; 12(1): e0170442, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28107421

RESUMO

Cancer cell toxicity to therapeutic H2O2 varies widely depending on cell type. Interestingly, it has been observed that different cancer cell types have varying peroxiporin expression. We hypothesize that variation in peroxiporin expression can alter cell susceptibility to therapeutic H2O2 concentrations. Here, we silence peroxiporin aquaporin-3 (AQP3) on the pancreatic cancer cell line MIA PaCa-2 and compare clonogenic survival response to the wild-type. The results showed a significantly higher surviving fraction in the clonogenic response for siAQP3 MIA PaCa-2 cells at therapeutic H2O2 doses (P < 0.05). These results suggest that peroxiporin expression is significant in modulating the susceptibility of cancer cells to ascorbate therapy.


Assuntos
Aquaporina 3/metabolismo , Ácido Ascórbico/farmacologia , Peróxido de Hidrogênio/farmacologia , Neoplasias/patologia , Aquaporina 3/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Inativação Gênica , Humanos , Imuno-Histoquímica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA