Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Life Sci ; 332: 122128, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37769805

RESUMO

AIM: We tested the effects of low- to moderate-intensity resistance exercise training (RT) on the structure and function of pulmonary, right ventricle (RV), and skeletal muscle tissues in rats with stable pulmonary artery hypertension (PAH). MAIN METHODS: After the first monocrotaline (MCT; 20 mg/kg) injection, male rats were submitted to a RT program (Ladder climbing; 55-65 % intensity), 5 times/week. Seven days later rats received the second MCT dose. Physical effort tolerance test and echocardiographic examination were performed. After euthanasia, lung, heart, and biceps brachii were processed for histological, single myocyte, and biochemical analysis. KEY FINDINGS: RT improved survival and physical effort tolerance (i.e., maximum carrying load), mitigated the pulmonary artery resistance increase (i.e., TA/TE), and preserved cardiac function (i.e., fractional shortening, ejection fraction, stroke volume and TAPSE). RT counteracted oxidative stress (i.e., CAT, SOD, GST, MDA and NO) and adverse remodeling in lung (i.e., collapsed alveoli) and in biceps brachii (i.e., atrophy and total collagen) tissues. RT delayed RV adverse remodeling (i.e., hypertrophy, extracellular matrix, collagen types I and III, and fibrosis) and impairments in single RV myocyte contractility (i.e., amplitude and velocity to peak and relaxation). RT improved the expression of gene (i.e., miRNA 214) and intracellular Ca2+ cycling regulatory proteins (i.e., PLBser16); and of pathological (i.e., α/ß-MHC and Foxo3) and physiological (i.e., Akt, p-Akt, mTOR, p-mTOR, and Bcl-xL) hypertrophy pathways markers in RV tissue. SIGNIFICANCE: Low- to moderate-intensity RT benefits the structure and function of pulmonary, RV, and skeletal muscle tissues in rats with stable pulmonary artery hypertension.

2.
Theriogenology ; 198: 305-316, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634444

RESUMO

Due to environmental contamination, the environment constantly receives pollutants from various anthropic actions. These pollutants put ecological health at risk due to contamination and accumulation in living organisms, including wild animals and humans. Exposure can cause physiological, morphological, and behavioral changes in living beings. In this context, laboratory studies have frequently investigated how environmental contaminants affect the male reproductive system and gametes. However, few studies have examined how these contaminants affect male reproduction in naturally exposed animals. To better understand this topic, we conducted a systematic review of the effects of exposing male vertebrate animals to polluted environments on their reproductive functions. After an extensive search using the PubMed/MEDLINE, Scopus, and Web of Science databases, 39 studies met our inclusion criteria and were eligible for this review. This study showed that reproductive damages were frequent in fishes, amphibians, reptiles, birds, and mammals exposed to contaminated environments. Wild animals are exposed mainly to endocrine-disrupting compounds (EDCs), toxic metals, and radiation. Exposure to pollutants causes a reduction in androgen levels, impaired spermatogenesis, morphological damage to reproductive organs, and decreased sperm quality, leading to reduced fertility and population decline. Although several species have been studied, the number of studies is limited for some groups of vertebrates. Wildlife has proven valuable to our understanding of the potential effects of environmental contaminants on human and ecosystem health. Thus, some recommendations for future investigations are provided. This review also creates a baseline for the understanding state of the art in reproductive toxicology studies.


Assuntos
Ecossistema , Poluentes Ambientais , Animais , Masculino , Humanos , Sêmen , Vertebrados , Animais Selvagens , Poluentes Ambientais/toxicidade , Poluição Ambiental , Mamíferos , Genitália Masculina , Reprodução
3.
Arq. bras. cardiol ; 119(4): 574-584, Oct. 2022. tab, graf
Artigo em Português | LILACS-Express | LILACS | ID: biblio-1403371

RESUMO

Resumo Fundamento A hipertrofia e a dilatação do ventrículo direito observadas na hipertensão arterial pulmonar (HAP) prejudicam a dinâmica do ventrículo esquerdo (VE) achatando o septo interventricular. Objetivo Investigar se o treinamento físico resistido (TFR) de intensidade baixa a moderada é benéfico para funções contráteis do VE e de cardiomiócitos em ratos durante o desenvolvimento de HAP induzida por monocrotalina (MCT). Métodos Foram usados ratos Wistar machos (Peso corporal: ~ 200 g). Para avaliar o tempo até o possível surgimento de insuficiência cardíaca (ou seja, ponto de desfecho), os ratos foram divididos em dois grupos, hipertensão com sedentarismo até a insuficiência (HSI, n=6) e hipertensão com treinamento até a insuficiência (HTI, n=6). Para testar os efeitos do TFR, os ratos foram divididos entre grupos de controle sedentários (CS, n=7), hipertensão com sedentarismo (HS, n=7) e hipertensão com treinamento (HT, n=7). A HAP foi induzida por duas injeções de MCT (20 mg/kg, com um intervalo de 7 dias). Os grupos com treinamento foram submetidos a um protocolo de TFR (subir escadas; 55-65% da máxima carga carregada), 5 dias por semana. A significância estatística foi definida em p <0,05. Resultados O TFR prolongou o ponto de desfecho (~25%), melhorou a tolerância ao esforço físico (~55%) e atenuou as disfunções de contratilidade de VE e de cardiomiócitos promovidas pela MCT preservando a fração de ejeção e o encurtamento fracional, a amplitude do encurtamento, e as velocidades de contração e relaxamento nos cardiomiócitos. O TFR também preveniu os aumentos de fibrose e colágeno tipo I no ventrículo esquerdo causados pela MCT, além de manter as dimensões de miócitos e colágeno tipo III reduzidas por MCT. Conclusão O TFR de intensidade baixa a moderada é benéfico para funções contráteis de VE e cardiomiócitos em ratos durante o desenvolvimento de HAP induzida por MCT.


Abstract Background The right ventricular hypertrophy and dilation observed in pulmonary artery hypertension (PAH) damages the left ventricle (LV) dynamics by flattening the interventricular septum. Objective To investigate whether low- to moderate-intensity resistance exercise training (RT) is beneficial to LV and cardiomyocyte contractile functions in rats during the development of monocrotaline (MCT)-induced PAH. Methods Male Wistar rats (Body weight: ~ 200 g) were used. To assess the time to potential heart failure onset (i.e., end point), rats were divided into sedentary hypertension until failure (SHF, n=6) and exercise hypertension until failure (EHF, n=6) groups. To test RT effects, rats were divided into sedentary control (SC, n = 7), sedentary hypertension (SH, n=7), and exercise hypertension (EH, n=7) groups. PAH was induced by two MCT injections (20 mg/kg, with 7 days interval). Exercise groups were submitted to an RT protocol (Ladder climbing; 55-65% of carrying maximal load), 5 times/week. Statistical significance was assumed at P < 0.05. Results RT prolonged the end point (~25 %), enhanced the physical effort tolerance (~ 55%), and mitigated the LV and cardiomyocyte contractility dysfunctions promoted by MCT by preserving the ejection fraction and fractional shortening, the amplitude of shortening, and the velocities of contraction and relaxation in cardiomyocytes. RT also prevented increases in left ventricle fibrosis and type I collagen caused by MCT, and maintained the type III collagen and myocyte dimensions reduced by MCT. Conclusion Low- to moderate-intensity RT benefits LV and cardiomyocyte contractile functions in rats during the development of MCT-induced PAH.

4.
Arq Bras Cardiol ; 119(4): 574-584, 2022 10.
Artigo em Inglês, Português | MEDLINE | ID: mdl-36074480

RESUMO

BACKGROUND: The right ventricular hypertrophy and dilation observed in pulmonary artery hypertension (PAH) damages the left ventricle (LV) dynamics by flattening the interventricular septum. OBJECTIVE: To investigate whether low- to moderate-intensity resistance exercise training (RT) is beneficial to LV and cardiomyocyte contractile functions in rats during the development of monocrotaline (MCT)-induced PAH. METHODS: Male Wistar rats (Body weight: ~ 200 g) were used. To assess the time to potential heart failure onset (i.e., end point), rats were divided into sedentary hypertension until failure (SHF, n=6) and exercise hypertension until failure (EHF, n=6) groups. To test RT effects, rats were divided into sedentary control (SC, n = 7), sedentary hypertension (SH, n=7), and exercise hypertension (EH, n=7) groups. PAH was induced by two MCT injections (20 mg/kg, with 7 days interval). Exercise groups were submitted to an RT protocol (Ladder climbing; 55-65% of carrying maximal load), 5 times/week. Statistical significance was assumed at P < 0.05. RESULTS: RT prolonged the end point (~25 %), enhanced the physical effort tolerance (~ 55%), and mitigated the LV and cardiomyocyte contractility dysfunctions promoted by MCT by preserving the ejection fraction and fractional shortening, the amplitude of shortening, and the velocities of contraction and relaxation in cardiomyocytes. RT also prevented increases in left ventricle fibrosis and type I collagen caused by MCT, and maintained the type III collagen and myocyte dimensions reduced by MCT. CONCLUSION: Low- to moderate-intensity RT benefits LV and cardiomyocyte contractile functions in rats during the development of MCT-induced PAH.


FUNDAMENTO: A hipertrofia e a dilatação do ventrículo direito observadas na hipertensão arterial pulmonar (HAP) prejudicam a dinâmica do ventrículo esquerdo (VE) achatando o septo interventricular. OBJETIVO: Investigar se o treinamento físico resistido (TFR) de intensidade baixa a moderada é benéfico para funções contráteis do VE e de cardiomiócitos em ratos durante o desenvolvimento de HAP induzida por monocrotalina (MCT). MÉTODOS: Foram usados ratos Wistar machos (Peso corporal: ~ 200 g). Para avaliar o tempo até o possível surgimento de insuficiência cardíaca (ou seja, ponto de desfecho), os ratos foram divididos em dois grupos, hipertensão com sedentarismo até a insuficiência (HSI, n=6) e hipertensão com treinamento até a insuficiência (HTI, n=6). Para testar os efeitos do TFR, os ratos foram divididos entre grupos de controle sedentários (CS, n=7), hipertensão com sedentarismo (HS, n=7) e hipertensão com treinamento (HT, n=7). A HAP foi induzida por duas injeções de MCT (20 mg/kg, com um intervalo de 7 dias). Os grupos com treinamento foram submetidos a um protocolo de TFR (subir escadas; 55-65% da máxima carga carregada), 5 dias por semana. A significância estatística foi definida em p <0,05. RESULTADOS: O TFR prolongou o ponto de desfecho (~25%), melhorou a tolerância ao esforço físico (~55%) e atenuou as disfunções de contratilidade de VE e de cardiomiócitos promovidas pela MCT preservando a fração de ejeção e o encurtamento fracional, a amplitude do encurtamento, e as velocidades de contração e relaxamento nos cardiomiócitos. O TFR também preveniu os aumentos de fibrose e colágeno tipo I no ventrículo esquerdo causados pela MCT, além de manter as dimensões de miócitos e colágeno tipo III reduzidas por MCT. CONCLUSÃO: O TFR de intensidade baixa a moderada é benéfico para funções contráteis de VE e cardiomiócitos em ratos durante o desenvolvimento de HAP induzida por MCT.


Assuntos
Hipertensão Pulmonar , Condicionamento Físico Animal , Disfunção Ventricular Esquerda , Animais , Masculino , Ratos , Colágeno Tipo I , Colágeno Tipo III , Modelos Animais de Doenças , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/terapia , Monocrotalina/efeitos adversos , Artéria Pulmonar , Ratos Wistar , Treinamento Resistido
5.
Reprod Toxicol ; 113: 110-119, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36007673

RESUMO

Eugenol is the main constituent of clove extract. It is a remarkably versatile molecule incorporated as a functional ingredient in several food products and widely applied in the pharmaceutical industry. Men consume natural products enriched with eugenol for treating sexual disorders and using as aphrodisiacs. Nevertheless, there is no information about the impact of eugenol intake on the reproductive parameters of healthy males. Therefore, we provided 10, 20, and 40 mg kg-1 pure eugenol to adult Wistar rats for 60 days. Testis, epididymis, and spermatozoa were analyzed under microscopic, biochemical, and functional approaches. This phenolic compound did not alter testicular and epididymal biometry and microscopy. However, 20 and 40 mg kg-1 eugenol reduced serum testosterone levels. The highest dose altered lactate and glucose concentrations in the epididymis. All the eugenol concentrations diminished CAT activity and MDA levels in the testis and increased FRAP and CAT activity in the epididymis. Epididymal sperm from rats receiving 10, 20, and 40 mg kg-1 eugenol presented high Ca2+ ATPase activity and low motility. In conclusion, eugenol at low and high doses negatively impacted the competence of epididymal sperm and modified oxidative parameters in male organs, with no influence on their microscopy.


Assuntos
Afrodisíacos , Produtos Biológicos , Adenosina Trifosfatases , Animais , Afrodisíacos/farmacologia , Produtos Biológicos/farmacologia , Epididimo , Eugenol/toxicidade , Glucose/farmacologia , Lactatos/farmacologia , Masculino , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar , Sêmen , Motilidade dos Espermatozoides , Espermatozoides , Testículo , Testosterona
6.
Life Sci ; 304: 120696, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35679916

RESUMO

Eugenol is a phenolic compound found in clove extract and extensively used in traditional medicine. It is unclear whether its intake can cause positive or negative effects on liver morphology and physiology in healthy individuals. Thus, we aimed to evaluate liver parameters of rats treated with 10, 20, and 40 mg kg-1 eugenol. After 60 days of treatment, liver samples were collected and analyzed by biometric, histological, biochemical, and oxidative analyses. Our results showed that 10, 20, and 40 mg kg-1 eugenol did not alter body and liver weights, serum and hepatic ALT levels and catalase, glutathione-s-transferase, total, Ca2+, and Mg2+ ATPases activities in treated animals. However, 20 and 40 mg kg-1 eugenol reduced Na+/K+ ATPase pump activity and blood glucose levels. They also increased hepatic glycogen content, superoxide dismutase activity, ferric reducing antioxidant power, and nitric oxide and malondialdehyde levels. Still, 20 and 40 mg kg-1 eugenol caused structural and functional damage to the liver tissue of eugenol-treated rats. We concluded that 10 mg kg-1 eugenol is a safe dose for consumption in long-term treatment for rats. Doses higher than 20 mg kg-1 lead to hepatic damage that can impair vital processes of liver functionality.


Assuntos
Antioxidantes , Eugenol , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Catalase/metabolismo , Eugenol/farmacologia , Fígado/metabolismo , Malondialdeído/metabolismo , Estresse Oxidativo , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
7.
Toxicol Appl Pharmacol ; 409: 115304, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33127376

RESUMO

Arsenic induces reproductive disorders in pubertal males after prepubertal exposure. However, it is unclear the extent to which those effects remain in testis and epididymis of sexually mature rats after arsenic insult. This study evaluated the effects of prepubertal arsenic exposure in male organs of pubertal rats, and their reversibility in adult rats. Male pups of Wistar rats on postnatal day (PND) 21 were divided into two groups (n = 20/group): Control animals received filtered water and exposed rats received 10 mg L--1 arsenic from PND 21 to PND 51. At PND 52, testis and epididymis of ten animals per group were examined for toxic effects under morphological, functional, and molecular approaches. The other animals were kept alive under free arsenic conditions until PND 82, and further analyzed for the same parameters. Pubertal rats overexpressed mRNA levels of SOD1, SOD2, CAT, GSTK1, and MT1 in their testis and SOD1, CAT, and GSTK1 in their epididymis. In those organs, catalase activity was altered, generating byproducts of oxidative stress. The antioxidant gene expression was unchanged in adult rats in contrast to the altered activity of antioxidant enzymes. Histological alterations of testis and epididymis tissues were observed in pubertal and adult rats. Interestingly, only adult rats exhibited a remarkable decrease in serum testosterone levels. Prepubertal exposure to arsenic caused morphological and functional alterations in male reproductive organs of pubertal rats. In adult rats, these damages disappeared, remained, get worsened, or recovered depending on the parameter analyzed, indicating potential male fertility disorders during adulthood.


Assuntos
Arsênio/toxicidade , Reprodução/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Antioxidantes/metabolismo , Epididimo/efeitos dos fármacos , Epididimo/metabolismo , Masculino , Tamanho do Órgão/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testosterona/metabolismo
8.
Life Sci ; 257: 118132, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32710949

RESUMO

AIM: Arsenic, an environmental contaminant, represents a public health problem worldwide. Studies have shown its association with molecular mechanisms related to cardiomyocytes redox balance. However, the microstructure and ultrastructure of cardiac tissue, as well as the activity of its antioxidant defenses front of disturbances in the mineral bioavailability induced by arsenic are still scarce. Thus, the aim of this study was to evaluate if arsenic exposure might induce structural and ultrastructural damages in cardiac tissue, including pathological remodeling of the parenchyma and stroma. Moreover, its impact on micromineral distribution and antioxidant enzymes activity in heart tissue was also evaluated. MAIN METHODS: Adult male Wistar rats were divided into three groups that received 0, 1 and 10 mg/L sodium arsenite in drinking water for eight weeks. The hearts were collected and subjected to structural and ultrastructural analysis, mineral microanalysis and antioxidant enzymes quantification. Functional markers of cardiac damages were evaluated using serum samples. KEY FINDINGS: Arsenic exposure induced dose-dependent structural and ultrastructural remodeling of cardiac tissue, with parenchyma loss, increase of stroma components, collagen deposition, and pathological damages such as inflammation, sarcomere disorganization, mitochondria degeneration and myofilament dissociation. Moreover, this metalloid was bioaccumulated in the tissue affecting its micromineral content, which resulted in antioxidant imbalance and increased levels of oxidative stress and cardiac markers. SIGNIFICANCE: Taken together, our findings indicate that the heart is a potential target to arsenic toxicity, and long-term exposure to this metalloid must be avoided, once it might induce several cardiac tissue pathologies.


Assuntos
Arsênio/toxicidade , Coração/efeitos dos fármacos , Miocárdio/patologia , Remodelação Ventricular/efeitos dos fármacos , Animais , Arsênio/administração & dosagem , Arsênio/análise , Catalase/metabolismo , Relação Dose-Resposta a Droga , Glutationa Transferase/metabolismo , Masculino , Miocárdio/química , Miocárdio/ultraestrutura , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
9.
J Appl Toxicol ; 40(2): 214-223, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31429093

RESUMO

Arsenic is a metalloid widely found in the environment in organic and inorganic forms. Exposure to inorganic arsenic forms via drinking water has been associated with an increased incidence of negative health effects, including reproductive disorders and dysfunction of the endocrine system. However, the impact of arsenic exposure on female reproductive development is still unclear. Therefore, in the present study, we evaluated the effects of prenatal exposure to arsenic on the initial sexual development and puberty onset, and in the morphology of the female reproductive organs, estrous cycle regularity and fertility parameters during adulthood. To do that, pregnant female Wistar rats were exposed to 10 mg/L sodium arsenite via drinking water from gestational day (GD) 1 until GD 21 and the female offspring was evaluated in different postnatal days. Our results showed that prenatal arsenic exposure induced a decrease of litter weight and morphological masculinization in females at postnatal day 1. Moreover, these females had a delay in the age of puberty onset and alteration in estrous cycle number and length. During adulthood, females from the sodium arsenite group showed an increase in endometrium, myometrium and perimetrium areas, and an imbalance in uterine antioxidant enzyme activity. These animals also presented an increase in post-implantation loss and reabsorption number, leading to reduced viable fetus number. In conclusion, prenatal arsenic exposure in rats was able to promote female masculinization, alter sexual development and impair reproductive performance.


Assuntos
Arsenitos/toxicidade , Ciclo Estral/efeitos dos fármacos , Exposição Materna/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal , Puberdade/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Compostos de Sódio/toxicidade , Animais , Peso Corporal/efeitos dos fármacos , Feminino , Fertilidade/efeitos dos fármacos , Modelos Animais , Gravidez , Ratos , Ratos Wistar
10.
Environ Sci Pollut Res Int ; 26(12): 12459-12469, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30847815

RESUMO

It is known that either arsenic exposure or diabetes can impact renal function. However, it is unclear how these combined factors may influence kidney functions. Therefore, we evaluated morphological, functional, and oxidative parameters in the kidney of diabetic rats exposed to arsenic. Healthy male Wistar rats and streptozotocin-induced diabetic rats were exposed to 0 and 10 mg/L arsenate through drinking water for 40 days. Renal tissue was assessed using morphometry, mitosis and apoptosis markers, mineral proportion, oxidative stress markers, as well as the activity of antioxidant enzymes and membrane-bound adenosine triphosphatases. Arsenate intake altered glucose levels in healthy animals, but it did not reach hyperglycemic conditions. In diabetic animals, arsenate led to a remarkable increase of glycogen nephrosis in distal tubules. In these animals, additionally, the activity of catalase and glutathione S-transferase, besides the proportion of Fe, Cu, and K in renal tissue, was altered. Nevertheless, arsenate did not accumulate in the kidney and did not impact on other parameters previously altered by diabetes, including levels of malondialdehyde, Na, urea, creatinine, and apoptosis and mitosis markers. In conclusion, besides the intensification of glycogen nephrosis, the kidney was able to handle arsenate toxicity at this point, preventing arsenic deposition in the exposed groups and the impairment of renal function.


Assuntos
Arsênio/toxicidade , Glicogênio/metabolismo , Substâncias Perigosas/toxicidade , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Arseniatos , Biomarcadores/metabolismo , Catalase/metabolismo , Creatinina/metabolismo , Diabetes Mellitus Experimental , Rim/metabolismo , Masculino , Malondialdeído/metabolismo , Nefrose , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar
11.
Life Sci ; 209: 472-480, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30144451

RESUMO

AIMS: Studies have shown that exposure to either environmental toxicants or hyperglycemia causes hepatic injuries. However, it is unclear the extent to which their combined exposure may influence liver functions. Therefore, we aimed to evaluate morphological and functional hepatic parameters in diabetic rats exposed to arsenic. METHODS: Diabetes was induced in male rats by intraperitoneal streptozotocin injection. While healthy and diabetic animals received saline solution (negative control and diabetes control, respectively), other animals received 10 mg/L sodium arsenate (arsenic control and diabetes + arsenic groups, respectively) for 40 days in drinking water. Liver tissue was subjected to antioxidant enzymes analysis, cytokine assay, arsenic determination, and histopathological evaluation. Functional markers of hepatic damage were analyzed using serum samples. KEY FINDINGS: Arsenate exposure reduced the antioxidant enzymes activity in healthy rats, and it worsened the reduction of GST in diabetic animals. Consequently, arsenate-exposed animals showed increased malondialdehyde and carbonyl protein levels, being this increase worsened in diabetes + arsenic animals. Arsenate-exposed groups also showed hepatic inflammatory process with high number of mast cells and TNF-α production mainly in diabetes + arsenic animals. Vascular alterations, such as congestion, bleeding, and hemosiderin deposition were intensified in diabetes + arsenic animals, whereas glycogen storage reduced in these animals. SIGNIFICANCE: We concluded that arsenate exposure was able to intensify morphological and functional damages in liver tissue of diabetic animals.


Assuntos
Arsênio/toxicidade , Diabetes Mellitus Experimental/complicações , Inflamação/etiologia , Hepatopatias/etiologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Hepatopatias/metabolismo , Hepatopatias/patologia , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...