Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 108(10): 107002, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22463442

RESUMO

Using polarized and unpolarized neutron scattering, we show that interstitial Fe in superconducting Fe(1+y)Te(1-x)Se(x) induces a magnetic Friedel-like oscillation that diffracts at Q⊥=(1/2 0) and involves >50 neighboring Fe sites. The interstitial >2µ(B) moment is surrounded by compensating ferromagnetic four-spin clusters that may seed double stripe ordering in Fe(1+y)Te. A semimetallic five-band model with (1/2 1/2) Fermi surface nesting and fourfold symmetric superexchange between interstitial Fe and two in-plane nearest neighbors largely accounts for the observed diffraction.

2.
Artigo em Inglês | MEDLINE | ID: mdl-26900514

RESUMO

The new thermal triple-axis spectrometer at the NIST Center for Neutron Research (NCNR) is located at the BT-7 beam port. The 165 mm diameter reactor beam is equipped with a selection of Söller collimators, beam-limiters, and a pyrolytic graphite (PG) filter to tailor the beam for the dual 20×20 cm(2) double-focusing monochromator system that provides monochromatic fluxes exceeding 10(8) n/cm(2)/s onto the sample. The two monochromators installed are PG(002) and Cu(220), which provide incident energies from 5 meV to above 500 meV. The computer controlled analyzer system offers six standard modes of operation, including a diffraction detector, a position-sensitive detector (PSD) in diffraction mode, horizontal energy focusing analyzer with detector, a Q-E mode employing a flat analyzer and PSD, a constant-E mode with the analyzer crystal system and PSD, and a conventional mode with a selection of Söller collimators and detector. Additional configurations for specific measurement needs are also available. This paper discusses the capabilities and performance for this new state-of-the-art neutron spectrometer.

3.
Phys Rev Lett ; 99(14): 147201, 2007 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-17930712

RESUMO

In studying well-characterized, exchange-biased Fe(3)O(4)/CoO superlattices, we demonstrate a causal link between the exchange bias effect and the perpendicular coupling of the ferrimagnetic and antiferromagnetic spins. Neutron diffraction studies reveal that for thin CoO layers the onset temperature for exchange biasing T(B) matches the onset of locked-in, preferential perpendicular coupling of the spins, rather than the antiferromagnetic ordering temperature T(N). The results are explained by considering the role of anisotropic exchange first proposed by Dzyaloshinsky and Moriya and developing a model based purely on information on structural defects and exchange for these oxides. The devised mechanism provides a general explanation of biasing in systems with perpendicular coupling.

4.
Phys Rev Lett ; 86(14): 3144-7, 2001 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-11290128

RESUMO

We report a neutron scattering study of the long-wavelength dynamic spin correlations in the model two-dimensional S = 1/2 square lattice Heisenberg antiferromagnets Sr2CuO2Cl2 and Sr2Cu3O4Cl2. The characteristic energy scale, omega(0)(T/J), is determined by measuring the quasielastic peak width in the paramagnetic phase over a wide range of temperature ( 0.2 less similarT/J less similar0.7). The obtained values for omega(0)(T/J) agree quantitatively between the two compounds and also with values deduced from quantum Monte Carlo simulations. The combined data show scaling behavior, omega approximately xi(-z), over the entire temperature range with z = 1.0(1), in agreement with dynamic scaling theory.

5.
J Res Natl Inst Stand Technol ; 106(6): 953-63, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-27500056

RESUMO

Magnetic neutron scattering plays a central role in determining and understanding the microscopic properties of a vast variety of magnetic systems, from the fundamental nature, symmetry, and dynamics of magnetically ordered materials to elucidating the magnetic characteristics essential in technological applications. From the early days of neutron scattering measurements at NBS/NIST, magnetic diffraction studies have been a central theme involving many universities, industrial and government labs from around the United States and worldwide. Such measurements have been used to determine the spatial arrangement and directions of the atomic magnetic moments, the atomic magnetization density of the individual atoms in the material, and the value of the ordered moments as a function of thermodynamic parameters such as temperature, pressure, and applied magnetic field. These types of measurements have been carried out on single crystals, powders, thin films, and artificially grown multilayers, and often the information collected can be obtained by no other experimental technique. This article presents, in an historical perspective, a few examples of work carried out at the NIST Center for Neutron Research (NCNR), and discusses the key role that the Center can expect to play in future magnetism research.

6.
Phys Rev Lett ; 84(26 Pt 1): 6102-5, 2000 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-10991134

RESUMO

The blocking temperature T(B) has been determined as a function of the antiferromagnetic layer thickness in the Fe3O4/CoO exchange biased system. For CoO layers thinner than 50 A, T(B) is reduced below the Néel temperature T(N) of bulk CoO (291 K), independent of crystallographic orientation or film substrate ( alpha-Al2O3, SrTiO3, and MgO). Neutron diffraction studies show that T(B) does not track the CoO ordering temperature and, hence, that this reduction in T(B) does not arise from finite-size scaling. Instead, the ordering temperature of the CoO layers is enhanced above the bulk T(N) for layer thicknesses approximately less than or equal to 100 A due to the proximity of magnetic Fe3O4 layers.

7.
Science ; 262(5130): 83-6, 1993 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17742962

RESUMO

A detailed small-angle neutron scattering study of the vortex lattice in a single crystal of YBa(2)Cu(3)O(7) was made for a field of 0.5 tesla inclined at angles between 0 and 80 degrees to the crystalline c axis. The vortex lattice is triangular for all angles, and for angles less than or equal to 70 degrees its orientation adjusts itself to maximize the pinning energy to densely and highly regularly spaced twin planes. These observations have important implications for the microscopic flux-pinning mechanism, and hence for the critical current achievable in YBa(2)Cu(3)O(7). For large angles (about 80 degrees) the vortex lattice consists of independent chains in the orientation predicted by anisotropic London theory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...