Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 14(47): 17725-17734, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36420634

RESUMO

We investigate theoretically the band transport of electrons and holes in a "quantum-dot-in-perovskite" solid, a periodic array of semiconductor nanocrystal quantum dots embedded in a matrix of lead halide perovskite. For concreteness we focus on PbS quantum dots passivated by inorganic halogen ligands and embedded in a matrix of CsPbI3. We find that the halogen ligands play a decisive role in determining the band offset between the dot and matrix and may therefore provide a straightforward way to control transport experimentally. The model and analysis developed here may readily be generalized to analyze band transport in a broader class of dot-in-solid materials.

2.
Nanoscale ; 12(45): 23028-23035, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33200157

RESUMO

We investigate theoretically the transport of electrons and holes in crystalline solids consisting of three-dimensional arrays of semiconductor nanocrystals passivated by two types of organic ligands-linear chain carboxylates and functionalized aromatic cinnamates. We focus on a critical quantity in transport: the quantum-mechanical overlap of the strongly confined electron and hole wavefunctions on neighboring nanocrystals. Using results from density-functional-theory (DFT) calculations, we construct a one-dimensional model system whose analytic wavefunctions reproduce the full DFT numerical overlap values. By investigating the analytic behavior of this model, we reveal several important features of electron transport. The most significant is that the wavefunction overlap decays exponentially with ligand length, with a characteristic decay length that depends primarily on properties of the ligand and is almost independent of the size and type of nanocrystal. Functionalization of the ligands can also affect the overlap by changing the height of the tunneling barrier. The physically transparent analytic expressions we obtain for the wavefunction overlap and its decay length should be useful for future efforts to control transport in nanocrystal solids.

3.
ACS Appl Mater Interfaces ; 12(43): 49245-49251, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33064455

RESUMO

We develop a microscopic theoretical model of AlN, GaN, and InN film growth by atomic layer epitaxy. To make the model realistic, we take into account the atomic hydrogen that is created by the hydrogen plasma commonly used in plasma-assisted atomic layer epitaxy. This growth technique relies on separate deposition steps for nitrogen and the group-III cation. Our model addresses the processes that occur after a complete monolayer of nitrogen has formed, that is, the deposition, adsorption, surface diffusion, island nucleation, and island growth of group-III cations. According to our model, the three nitrides grow in a standard and qualitatively similar manner: during a brief nucleation phase, a modest attractive interaction leads to stable island nuclei consisting of just a few atoms. These then grow in place at a nearly constant island density and with an island size distribution which obeys an expected universal scaling relationship that depends only on the critical island size.

4.
ACS Appl Mater Interfaces ; 10(23): 20142-20149, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29790332

RESUMO

Atomistic control over the growth of semiconductor thin films, such as aluminum nitride, is a long-sought goal in materials physics. One promising approach is plasma-assisted atomic layer epitaxy, in which separate reactant precursors are employed to grow the cation and anion layers in alternating deposition steps. The use of a plasma during the growth-most often a hydrogen plasma-is now routine and generally considered critical, but the precise role of the plasma is not well-understood. We propose a theoretical atomistic model and elucidate its consequences using analytical rate equations, density functional theory, and kinetic Monte Carlo statistical simulations. We show that using a plasma has two important consequences, one beneficial and one detrimental. The plasma produces atomic hydrogen in the gas phase, which is important for removing methyl radicals left over from the aluminum precursor molecules. However, atomic hydrogen also leads to atomic carbon on the surface and, moreover, opens a channel for trapping these carbon atoms as impurities in the subsurface region, where they remain as unwanted contaminants. Understanding this dual role leads us to propose a solution for the carbon contamination problem which leaves the main benefit of the plasma largely unaffected.

5.
Nano Lett ; 17(11): 6870-6877, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-28991489

RESUMO

Ostwald ripening describes how the size distribution of colloidal particles evolves with time due to thermodynamic driving forces. Typically, small particles shrink and provide material to larger particles, which leads to size defocusing. Semiconductor nanoplatelets, thin quasi-two-dimensional (2D) particles with thicknesses of only a few atomic layers but larger lateral dimensions, offer a unique system to investigate this phenomenon. Experiments show that the distribution of nanoplatelet thicknesses does not defocus during ripening, but instead jumps sequentially from m to (m + 1) monolayers, allowing precise thickness control. We investigate how this counterintuitive process occurs in CdSe nanoplatelets. We develop a microscopic model that treats the kinetics and thermodynamics of attachment and detachment of monomers as a function of their concentration. We then simulate the growth process from nucleation through ripening. For a given thickness, we observe Ostwald ripening in the lateral direction, but none perpendicular. Thicker populations arise instead from nuclei that capture material from thinner nanoplatelets as they dissolve laterally. Optical experiments that attempt to track the thickness and lateral extent of nanoplatelets during ripening appear consistent with these conclusions. Understanding such effects can lead to better synthetic control, enabling further exploration of quasi-2D nanomaterials.

6.
Nat Mater ; 16(7): 743-748, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28369052

RESUMO

Colloidal nanoplatelets are atomically flat, quasi-two-dimensional sheets of semiconductor that can exhibit efficient, spectrally pure fluorescence. Despite intense interest in their properties, the mechanism behind their highly anisotropic shape and precise atomic-scale thickness remains unclear, and even counter-intuitive for commonly studied nanoplatelets that arise from isotropic crystal structures (such as zincblende CdSe and lead halide perovskites). Here we show that an intrinsic instability in growth kinetics can lead to such highly anisotropic shapes. By combining experimental results on the synthesis of CdSe nanoplatelets with theory predicting enhanced growth on narrow surface facets, we develop a model that explains nanoplatelet formation as well as observed dependencies on time and temperature. Based on standard concepts of volume, surface and edge energies, the resulting growth instability criterion can be directly applied to other crystalline materials. Thus, knowledge of this previously unknown mechanism for controlling shape at the nanoscale can lead to broader libraries of quasi-two-dimensional materials.

7.
Nat Nanotechnol ; 11(11): 919-920, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27428276
8.
Phys Rev Lett ; 115(7): 076803, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26317740

RESUMO

Quantum-dot molecules were constructed on a semiconductor surface using atom manipulation by scanning tunneling microscopy (STM) at 5 K. The molecules consist of several coupled quantum dots, each of which comprises a chain of charged adatoms that electrostatically confines intrinsic surface-state electrons. The coupling takes place across tunnel barriers created reversibly using the STM tip. These barriers have an invariant, reproducible atomic structure and can be positioned-and repeatedly repositioned-to create a series of reconfigurable quantum-dot molecules with atomic precision.

9.
Phys Rev Lett ; 113(15): 156803, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25375732

RESUMO

Although poorly understood, cation-exchange reactions are increasingly used to dope or transform colloidal semiconductor nanocrystals (quantum dots). We use density-functional theory and kinetic Monte Carlo simulations to develop a microscopic theory that explains structural, optical, and electronic changes observed experimentally in Ag-cation-exchanged CdSe nanocrystals. We find that Coulomb interactions, both between ionized impurities and with the polarized nanocrystal surface, play a key role in cation exchange. Our theory also resolves several experimental puzzles related to photoluminescence and electrical behavior in CdSe nanocrystals doped with Ag.

10.
Nat Nanotechnol ; 9(7): 505-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24974937

RESUMO

Quantum dots are often called artificial atoms because, like real atoms, they confine electrons to quantized states with discrete energies. However, although real atoms are identical, most quantum dots comprise hundreds or thousands of atoms, with inevitable variations in size and shape and, consequently, unavoidable variability in their wavefunctions and energies. Electrostatic gates can be used to mitigate these variations by adjusting the electron energy levels, but the more ambitious goal of creating quantum dots with intrinsically digital fidelity by eliminating statistical variations in their size, shape and arrangement remains elusive. We used a scanning tunnelling microscope to create quantum dots with identical, deterministic sizes. By using the lattice of a reconstructed semiconductor surface to fix the position of each atom, we controlled the shape and location of the dots with effectively zero error. This allowed us to construct quantum dot molecules whose coupling has no intrinsic variation but could nonetheless be tuned with arbitrary precision over a wide range. Digital fidelity opens the door to quantum dot architectures free of intrinsic broadening-an important goal for technologies from nanophotonics to quantum information processing as well as for fundamental studies of confined electrons.


Assuntos
Pontos Quânticos/química , Semicondutores , Tamanho da Partícula , Pontos Quânticos/ultraestrutura
11.
J Am Chem Soc ; 136(12): 4670-9, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24564575

RESUMO

We report the synthesis and characterization of Pb-chalcogenide fused quantum-dot (QD) dimer structures. The resulting QD dimers range in length from 6 to 16 nm and are produced by oriented attachment of single QD monomers with diameters of 3.1-7.8 nm. QD monomers with diameters exceeding about 5 nm appear to have the greatest affinity for QD dimer formation and, therefore, gave the greatest yields of fused structures. We find a new absorption feature in the first exciton QD dimer spectra and assign this to a splitting of the 8-fold degenerate 1S-level. The dimer splitting increases from 50 to 140 meV with decrease of the QD-monomer size, and we present a mechanism that accounts for this splitting. We also demonstrate the possibility of fusing two QDs with different sizes into a heterostructure.

12.
ACS Nano ; 6(5): 4190-5, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22494431

RESUMO

Bistable organic molecules were deposited on a weakly binding III-V semiconductor surface and then pinned into place using individual native adatoms. These pinning atoms, positioned by atomically precise manipulation techniques in a cryogenic scanning tunneling microscope (STM) at 5 K, stabilize the π-conjugated molecule against rotation excited by the tunneling electrons. The pinning allows triggering of the molecule's intrinsic switching mechanism (a hydrogen transfer reaction) by the STM tunnel current. Density-functional theory calculations reveal that the energetics of the switching process is virtually unaffected by both the surface and the pinning atoms. Hence, we have demonstrated that individual molecules with predictable, predefined functions can be stabilized and assembled on semiconductor templates.

13.
Phys Rev Lett ; 107(2): 026102, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21797624

RESUMO

We report an unexpected mechanism by which an epitaxial interface can form between materials having strongly mismatched lattice constants. A simple model is proposed in which one material tilts out of the interface plane to create a coincidence-site lattice that balances two competing geometrical criteria--low residual strain and short coincidence-lattice period. We apply this model, along with complementary first-principles total-energy calculations, to the interface formed by molecular-beam epitaxy of cubic Fe on hexagonal GaN and find excellent agreement between theory and experiment.

14.
Nano Lett ; 11(6): 2486-9, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21591678

RESUMO

Scanning tunneling microscopy (STM) at 5 K reveals that native atoms in the surface layer of a semiconductor crystal become bistable in vertical height when a nanostructure is assembled nearby. The binary switching of surface atoms, driven by the STM tip, changes their charge state. Coupling is facilitated by assembling adatom chains, allowing us to explore the emergence of complex multiple switching. Density-functional theory calculations rationalize the observations and a lattice-gas model predicts the cooperative behavior from first principles.


Assuntos
Nanoestruturas/química , Microscopia de Tunelamento , Tamanho da Partícula , Semicondutores , Propriedades de Superfície
15.
Nat Commun ; 1: 58, 2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20975712

RESUMO

It has been a long-standing goal to create magnetism in a non-magnetic material by manipulating its structure at the nanoscale. Many structural defects have unpaired spins; an ordered arrangement of these can create a magnetically ordered state. In this article we predict theoretically that stepped silicon surfaces stabilized by adsorbed gold achieve this state by self-assembly, creating chains of polarized electron spins with atomically precise structural order. The spins are localized at silicon step edges having the form of graphitic ribbons. The predicted magnetic state is supported by recent experimental observations, such as the coexistence of double- and triple-period distortions and the absence of edge states in photoemission. Ordered arrays of surface spins can be accessed by probes with single-spin sensitivity, such as spin-polarized scanning tunnelling microscopy. The integration of structural and magnetic order is crucial for technologies involving spin-based computation and storage at the atomic level.

16.
Nano Lett ; 9(12): 4333-7, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19788272

RESUMO

We describe in detail an atom-by-atom exchange manipulation technique using a scanning tunneling microscope probe. As-deposited Mn adatoms (Mn(ad)) are exchanged one-by-one with surface In atoms (In(su)) to create a Mn surface-substitutional (Mn(In)) and an exchanged In adatom (In(ad)) by an electron tunneling induced reaction Mn(ad) + In(su) --> Mn(In) + In(ad) on the InAs(110) surface. In combination with density-functional theory and high resolution scanning tunneling microscopy imaging, we have identified the reaction pathway for the Mn and In atom exchange.


Assuntos
Arsenicais/química , Cristalização/métodos , Índio/química , Manganês/química , Micromanipulação/métodos , Microscopia de Tunelamento/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Nanotecnologia/métodos , Tamanho da Partícula , Propriedades de Superfície
17.
Nano Lett ; 8(9): 2878-82, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18680387

RESUMO

We propose a framework for describing the impurity doping of semiconductor colloidal nanocrystals. The model is applicable when diffusion of impurities through the nanocrystal is sufficiently small that it can be neglected. In this regime, the incorporation of impurities requires that they stably adsorb on the nanocrystal surface before being overgrown. This adsorption may be preempted by surfactants in the growth solution. We analyze numerically this competition for the case of Mn doping of CdSe nanocrystals. Our model is consistent with recent experiments and offers a route to the rational optimization of doped colloidal nanocrystals.

18.
Science ; 319(5871): 1776-9, 2008 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-18369131

RESUMO

The critical role that dopants play in semiconductor devices has stimulated research on the properties and the potential applications of semiconductor nanocrystals, or colloidal quantum dots, doped with intentional impurities. We review advances in the chemical synthesis of doped nanocrystals, in the theoretical understanding of the fundamental mechanisms that control doping, and in the creation of highly conducting nanocrystalline films. Because impurities can be used to alter the properties of nanoscale materials in desirable and controllable ways, doped nanocrystals can address key problems in applications from solar cells to bioimaging.


Assuntos
Nanopartículas , Semicondutores , Cristalização , Modelos Teóricos , Nanopartículas/química , Óptica e Fotônica
19.
Phys Rev Lett ; 99(25): 257202, 2007 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-18233554

RESUMO

We propose a model of carrier-mediated ferromagnetism in semiconductors that accounts for the temperature dependence of the carriers. The model permits analysis of the thermodynamic stability of competing magnetic states, opening the door to the construction of magnetic phase diagrams. As an example, we analyze the stability of a possible reentrant ferromagnetic semiconductor, in which increasing temperature leads to an increased carrier density such that the enhanced exchange coupling between magnetic impurities results in the onset of ferromagnetism as temperature is raised.

20.
Phys Rev Lett ; 97(2): 026602, 2006 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-16907469

RESUMO

Spin injection and detection in silicon is a difficult problem, in part because the weak spin-orbit coupling and indirect gap preclude using standard optical techniques. Two ways to overcome this difficulty are proposed, both based on spin-polarized transport across a heterojunction. Using a realistic transport model incorporating the relevant spin dynamics of both electrons and holes, it is argued that symmetry properties of the charge current can be exploited to detect electrical spin injection in silicon using currently available techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA