Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 326(Pt B): 116758, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36402019

RESUMO

In this study, performance of braid reinforced hollow fiber membrane containing polyvinylidene fluoride (PVDF) embedded with tungsten trioxide (WO3) nanosheets in a membrane bioreactor (MBR) was examined for textile wastewater treatment. The WO3 nanosheets was synthesized and blended at different concentrations (0.1-0.02 wt%) in casting solutions of the membranes. The WO3 nanosheets characterized using various tests such as XRD, FTIR, SEM, EDS, dot-mapping, and TEM. Furthermore, the effects of the increased WO3 nanosheets into the PVDF matrix on the membrane morphology, hydrophilicity, permeability, antifouling, and COD and color removal efficiency was investigated. The addition of 0.1 wt% of the nanosheets reduces the water contact angle from 69.3° to 62.5° while increasing overall porosity from 37.5 to 43.2%. COD and color removal for PVDF/0.10 wt% WO3 membrane was between 86-89% and 72-76%, respectively. While the TMP of modified WO3 membranes did not significantly increase due to antimicrobial properties of the WO3 nanosheets, the TMP of the pure PVDF membrane increase, indicating considerable cake layer fouling. The results of this study showed that modification of PVDF braid reinforced hollow fiber membrane using WO3 nanosheets is promising membrane for MBR systems.


Assuntos
Membranas Artificiais , Águas Residuárias , Reatores Biológicos , Têxteis
2.
J Water Process Eng ; 49: 103036, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35966450

RESUMO

In the last years, antiviral drugs especially used for the treatment of COVID-19 have been considered emerging contaminants because of their continuous occurrence and persistence in water/wastewater even at low concentrations. Furthermore, as compared to antiviral drugs, their metabolites and transformation products of these pharmaceuticals are more persistent in the environment. They have been found in environmental matrices all over the world, demonstrating that conventional treatment technologies are unsuccessful for removing them from water/wastewater. Several approaches for degrading/removing antiviral drugs have been studied to avoid this contamination. In this study, the present level of knowledge on the input sources, occurrence, determination methods and, especially, the degradation and removal methods of antiviral drugs are discussed in water/wastewater. Different removal methods, such as conventional treatment methods (i.e. activated sludge), advanced oxidation processes (AOPs), adsorption, membrane processes, and combined processes, were evaluated. In addition, the antiviral drugs and these metabolites, as well as the transformation products created as a result of treatment, were examined. Future perspectives for removing antiviral drugs, their metabolites, and transformation products were also considered.

3.
J Environ Manage ; 318: 115523, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35779301

RESUMO

Over the past few years, antiviral drugs against influenza are considered emerging contaminants since they cause environmental toxicity even at low concentrations. They have been found in environmental matrices all around the world, showing that conventional treatment methods fail to remove them from water and wastewater. In addition, the metabolites and transformation products of these drugs can be more persistent than original in the environment. Several techniques to degrade/remove antiviral drugs against influenza have been investigated to prevent this contamination. In this study, the characteristics of antiviral drugs against influenza, their measurement by analytical methods, and their removal in both water and wastewater treatment plants (WWTPs) were presented. Different treatment methods, such as traditional procedures (biological processes, filtration, coagulation, flocculation, and sedimentation), advanced oxidation processes (AOPs), adsorption and combined methods, were assessed. Ecotoxicological effects of both the antiviral drug and its metabolites as well as the transformation products formed as a result of treatment were evaluated. In addition, future perspectives for improving the removal of antiviral drugs against influenza, their metabolites and transformation products were further discussed. The research indicated that the main tested techniques in this study were ozonation, photolysis and photocatalysis. Combined methods, particularly those that use renewable energy and waste materials, appear to be the optimum approach for the treatment of effluents containing antiviral drugs against influenza. In light of high concentrations or probable antiviral resistance, this comprehensive assessment suggests that antiviral drug monitoring is required, and some of those substances may cause toxicological effects.


Assuntos
Influenza Humana , Poluentes Químicos da Água , Antivirais , Humanos , Influenza Humana/tratamento farmacológico , Influenza Humana/prevenção & controle , Medição de Risco , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Água , Poluentes Químicos da Água/análise
4.
Bioresour Technol ; 302: 122800, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31986336

RESUMO

Citrus waste from e.g., juice production is a potential substrate for anaerobic digestion (AD). However, due to the toxic citrus peel oil content, citrus waste has several challenges in biogas production. Hence, volatile fatty acids (VFAs) are very interesting intermediate products of AD. This paper was aimed to investigate VFA production from citrus wastes by boosting its production and inhibiting methane formation. Therefore, the effects of inoculum to substrate ratio (ISR), O2 presence, pH, and inhibitor for methanogens, in VFA production from citrus waste through acidification process were studied. The addition of 2 g/L methanogens inhibitor and the presence of O2 in the reactors were able to reduce methane production. The highest yield of VFA (0.793 g VFA/g VSadded) was achieved at controlled pH at 6 and low substrate loading (ISR 1:1). Acetic acid (32%), caproic acid (21%), and butyric acid (15%) dominate the VFA composition in this condition.


Assuntos
Reatores Biológicos , Citrus , Anaerobiose , Ácidos Graxos Voláteis , Concentração de Íons de Hidrogênio , Metano , Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...