Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
1.
Nat Commun ; 15(1): 3900, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724552

RESUMO

By incompletely understood mechanisms, type 2 (T2) inflammation present in the airways of severe asthmatics drives the formation of pathologic mucus which leads to airway mucus plugging. Here we investigate the molecular role and clinical significance of intelectin-1 (ITLN-1) in the development of pathologic airway mucus in asthma. Through analyses of human airway epithelial cells we find that ITLN1 gene expression is highly induced by interleukin-13 (IL-13) in a subset of metaplastic MUC5AC+ mucus secretory cells, and that ITLN-1 protein is a secreted component of IL-13-induced mucus. Additionally, we find ITLN-1 protein binds the C-terminus of the MUC5AC mucin and that its deletion in airway epithelial cells partially reverses IL-13-induced mucostasis. Through analysis of nasal airway epithelial brushings, we find that ITLN1 is highly expressed in T2-high asthmatics, when compared to T2-low children. Furthermore, we demonstrate that both ITLN-1 gene expression and protein levels are significantly reduced by a common genetic variant that is associated with protection from the formation of mucus plugs in T2-high asthma. This work identifies an important biomarker and targetable pathways for the treatment of mucus obstruction in asthma.


Assuntos
Asma , Proteínas Ligadas por GPI , Interleucina-13 , Lectinas , Mucina-5AC , Muco , Criança , Humanos , Asma/genética , Asma/metabolismo , Citocinas , Células Epiteliais/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Interleucina-13/genética , Interleucina-13/metabolismo , Lectinas/genética , Lectinas/metabolismo , Mucina-5AC/genética , Mucina-5AC/metabolismo , Muco/metabolismo , Mucosa Nasal/metabolismo , Polimorfismo Genético , Mucosa Respiratória/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-38663815

RESUMO

BACKGROUND: The relative utility of eosinophil peroxidase (EPX) and blood and sputum eosinophil counts as disease biomarkers in asthma is uncertain. OBJECTIVE: To determine the utility of EPX as a biomarker of systemic and airway eosinophilic inflammation in asthma. METHODS: EPX protein was measured by immunoassay in serum and sputum in 110 healthy controls to establish a normal reference range and in repeated samples of serum and sputum collected during three years of observation in 480 participants in the Severe Asthma Research Program (SARP)-3. RESULTS: Over three years, EPX levels in asthma patients were higher than normal in 27-31% of serum samples and 36-53% of sputum samples. Eosinophils and EPX correlated better in blood than in sputum (rs values of 0.74 and 0.43, respectively), and high sputum EPX levels occurred in 27% of participants with blood eosinophil counts < 150 cells/uL and 42% of participants with blood eosinophil counts 150-299 cells/uL. Patients with persistently high sputum EPX values for three years were characterized by severe airflow obstruction, frequent exacerbations, and high mucus plug scores. In 59 asthma patients who started mepolizumab during observation, serum EPX levels normalized in 96% but sputum EPX normalized in only 49%. Lung function remained abnormal even when sputum EPX normalized. CONCLUSION: Serum EPX is a valid protein biomarker of systemic eosinophilic inflammation in asthma, and sputum EPX levels are a more sensitive biomarker of airway eosinophilic inflammation than sputum eosinophil counts. Eosinophil measures in blood frequently miss airway eosinophilic inflammation, and mepolizumab frequently fails to normalize airway eosinophilic inflammation even though it invariably normalizes systemic eosinophilic inflammation.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38651338

RESUMO

Secreted deoxyribonucleases (DNases), such as DNase-1 and DNase-IL3, degrade extracellular DNA, and endogenous DNases have roles in resolving airway inflammation and guarding against autoimmune responses to nucleotides. Subsets of patients with asthma have high airway DNA levels, but information about DNase activity in health and in asthma is lacking. To characterize DNase activity in health and in asthma, we developed a novel kinetic assay using a Taqman probe sequence that is quickly cleaved by DNase-I to produce a large product signal. We used this kinetic assay to measure DNase activity in sputum from participants in the Severe Asthma Research Program (SARP)-3 (n=439) and from healthy controls (n=89). We found that DNase activity was lower than normal in asthma (78.7 RFU/min vs 120.4 RFU/min, p<0.0001). Compared to asthma patients with sputum DNase activity levels in the upper tertile activity levels, those in the lower tertile of sputum DNase activity were characterized clinically by more severe disease and pathologically by airway eosinophilia and airway mucus plugging. Carbamylation of DNase-I, a post translational modification that can be mediated by eosinophil peroxidase, inactivated DNase-I. In summary, a Taqman probe-based DNase activity assay uncovers low DNase activity in the asthma airway which is associated with more severe disease and airway mucus plugging and may be caused, at least in part, by eosinophil-mediated carbamylation.

4.
medRxiv ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38343848

RESUMO

Background: Blood lipids are dysregulated in pulmonary hypertension (PH). Lower high-density lipoproteins cholesterol (HDL-C) and low-density lipoproteins cholesterol (LDL-C) are associated with disease severity and death in PH. Right ventricle (RV) dysfunction and failure are the major determinants of morbidity and mortality in PH. This study aims to test the hypothesis that dyslipidemia is associated with RV dysfunction in PH. Methods: We enrolled healthy control subjects (n=12) and individuals with PH (n=30) (age: 18-65 years old). Clinical characteristics, echocardiogram, 2-[18F] fluoro-2-deoxy-D-glucose positron emission tomography (PET) scan, blood lipids, including total cholesterol (TC), triglycerides (TG), lipoproteins (LDL-C and HDL-C), and N-terminal pro-B type Natriuretic Peptide (NT-proBNP) were determined. Results: Individuals with PH had lower HDL-C [PH, 41±12; control, 56±16 mg/dL, p<0.01] and higher TG to HDL-C ratio [PH, 3.6±3.1; control, 2.2±2.2, p<0.01] as compared to controls. TC, TG, and LDL-C were similar between PH and controls. Lower TC and TG were associated with worse RV function measured by RV strain (R=-0.43, p=0.02 and R=-0.37, p=0.05 respectively), RV fractional area change (R=0.51, p<0.01 and R=0.48, p<0.01 respectively), RV end-systolic area (R=-0.63, p<0.001 and R=-0.48, p<0.01 respectively), RV end-diastolic area: R=-0.58, p<0.001 and R=-0.41, p=0.03 respectively), and RV glucose uptake by PET (R=-0.46, p=0.01 and R=-0.30, p=0.10 respectively). NT-proBNP was negatively correlated with TC (R=-0.61, p=0.01) and TG (R=-0.62, p<0.02) in PH. Conclusion: These findings confirm dyslipidemia is associated with worse right ventricular function in PH.

5.
Chest ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38354903

RESUMO

BACKGROUND: Health-related quality of life (HRQOL) is frequently impaired in pulmonary arterial hypertension. However, little is known about HRQOL in other forms of pulmonary hypertension (PH). RESEARCH QUESTION: Does HRQOL vary across groups of the World Symposium on Pulmonary Hypertension (WSPH) classification system? STUDY DESIGN AND METHODS: This cross-sectional study included patients with PH from the Pulmonary Vascular Disease Phenomics (PVDOMICS) cohort study. HRQOL was assessed by using emPHasis-10 (e-10), the 36-item Medical Outcomes Study Short Form survey (physical component score [PCS] and mental component score), and the Minnesota Living with Heart Failure Questionnaire. Pearson correlations between HRQOL and demographic, physiologic, and imaging characteristics within each WSPH group were tested. Multivariable linear regressions compared HRQOL across WSPH groups, adjusting for demographic characteristics, disease prevalence, functional class, and hemodynamics. Cox proportional hazards models were used to assess associations between HRQOL and survival across WSPH groups. RESULTS: Among 691 patients with PH, HRQOL correlated with functional class and 6-min walk distance but not hemodynamics. HRQOL was severely depressed across WSPH groups for all measures except the 36-item Medical Outcomes Study Short Form survey mental component score. Compared with Group 1 participants, Group 2 participants had significantly worse HRQOL (e-10 score, 29 vs 24 [P = .001]; PCS, 32.9 ± 8 vs 38.4 ± 10 [P < .0001]; and Minnesota Living with Heart Failure Questionnaire score, 50 vs 38 [P = .003]). Group 3 participants similarly had a worse e-10 score (31 vs 24; P < .0001) and PCS (33.3 ± 9 vs 38.4 ± 10; P < .0001) compared with Group 1 participants, which persisted in multivariable models (P < .05). HRQOL was associated in adjusted models with survival across Groups 1, 2, and 3. INTERPRETATION: HRQOL was depressed in PH and particularly in Groups 2 and 3 despite less severe hemodynamics. HRQOL is associated with functional capacity, but the severity of hemodynamic disease poorly estimates the impact of PH on patients' lives. Further studies are needed to better identify predictors and treatments to improve HRQOL across the spectrum of PH.

6.
Clin Exp Allergy ; 54(4): 265-277, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38253462

RESUMO

INTRODUCTION: Previous bronchoalveolar lavage fluid (BALF) proteomic analysis has evaluated limited numbers of subjects for only a few proteins of interest, which may differ between asthma and normal controls. Our objective was to examine a more comprehensive inflammatory biomarker panel in quantitative proteomic analysis for a large asthma cohort to identify molecular phenotypes distinguishing severe from nonsevere asthma. METHODS: Bronchoalveolar lavage fluid from 48 severe and 77 nonsevere adult asthma subjects were assessed for 75 inflammatory proteins, normalized to BALF total protein concentration. Validation of BALF differences was sought through equivalent protein analysis of autologous sputum. Subjects' data, stratified by asthma severity, were analysed by standard statistical tests, principal component analysis and 5 machine learning algorithms. RESULTS: The severe group had lower lung function and greater health care utilization. Significantly increased BALF proteins for severe asthma compared to nonsevere asthma were fibroblast growth factor 2 (FGF2), TGFα, IL1Ra, IL2, IL4, CCL8, CCL13 and CXCL7 and significantly decreased were platelet-derived growth factor a-a dimer (PDGFaa), vascular endothelial growth factor (VEGF), interleukin 5 (IL5), CCL17, CCL22, CXCL9 and CXCL10. Four protein differences were replicated in sputum. FGF2, PDGFaa and CXCL7 were independently identified by 5 machine learning algorithms as the most important variables for discriminating severe and nonsevere asthma. Increased and decreased proteins identified for the severe cluster showed significant protein-protein interactions for chemokine and cytokine signalling, growth factor activity, and eosinophil and neutrophil chemotaxis differing between subjects with severe and nonsevere asthma. CONCLUSION: These inflammatory protein results confirm altered airway remodelling and cytokine/chemokine activity recruiting leukocytes into the airways of severe compared to nonsevere asthma as important processes even in stable status.


Assuntos
Asma , Fator A de Crescimento do Endotélio Vascular , Adulto , Humanos , Proteômica , Fator 2 de Crescimento de Fibroblastos , Citocinas/metabolismo , Lavagem Broncoalveolar , Quimiocinas , Líquido da Lavagem Broncoalveolar
7.
MethodsX ; 12: 102497, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38089156

RESUMO

Mitochondria are increasingly recognized to play a role in the airway inflammation of asthma. Model systems to study the role of mitochondrial gene expression in bronchial epithelium are lacking. Here, we create custom bronchial epithelial cell lines that are depleted of mitochondrial DNA. One week of ethidium bromide (EtBr) treatment led to ∼95 % reduction of mtDNA copy number (mtDNA-CN) in cells, which was further reduced by addition of 25 µM 2',3'-dideoxycytidin (ddC). Treatment for up to three weeks with EtBr and ddC led to near complete loss of mtDNA. The basal oxygen consumption rate (OCR) of mtDNA-depleted BET-1A and BEAS-2B cells dropped to near zero. Glycolysis measured by extracellular acidification rate (ECAR) increased ∼two-fold in cells when mtDNA was eliminated. BET-1A ρ0 and BEAS-2B ρ0 cells were cultured for two months, frozen and thawed, cultured for two more months, and maintained near zero mtDNA-CN. Mitochondrial DNA-depleted BET-1A ρ0 and BEAS-2B ρ0 cell lines are viable, lack the capacity for aerobic respiration, and increase glycolysis.•BET-1A and BEAS-2B cells were treated with ethidium bromide (EtBr) with or without 2',3'-dideoxycytidine (ddC) to create cells lacking mitochondrial DNA (mtDNA).•Cells' mtDNA copy number relative to nuclear DNA (nDNA) were verified by quantitative polymerase chain reaction (qPCR).•Cells were also assessed for oxidative phosphorylation by measures of oxygen consumption using the Seahorse analyzer.

8.
medRxiv ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38106101

RESUMO

Rationale: Although airway oxidative stress and inflammation are central to asthma pathogenesis, there is limited knowledge of the relationship of asthma risk, severity, or exacerbations to mitochondrial dysfunction, which is pivotal to oxidant generation and inflammation. Objectives: We investigated whether mitochondrial DNA copy number (mtDNA-CN) as a measure of mitochondrial function is associated with asthma diagnosis, severity, oxidative stress, and exacerbations. Methods: We measured mtDNA-CN in blood in two cohorts. In the UK Biobank (UKB), we compared mtDNA-CN in mild and moderate-severe asthmatics to non-asthmatics. In the Severe Asthma Research Program (SARP), we evaluated mtDNA-CN in relation to asthma severity, biomarkers of oxidative stress and inflammation, and exacerbations. Measures and Main Results: In UK Biobank, asthmatics (n = 29,768) have lower mtDNA-CN compared to non-asthmatics (n = 239,158) (beta, -0.026 [95% CI, -0.038 to -0.014], P = 2.46×10-5). While lower mtDNA-CN is associated with asthma, mtDNA-CN did not differ by asthma severity in either UKB or SARP. Biomarkers of inflammation show that asthmatics have higher white blood cells (WBC), neutrophils, eosinophils, fraction exhaled nitric oxide (FENO), and lower superoxide dismutase (SOD) than non-asthmatics, confirming greater oxidative stress in asthma. In one year follow-up in SARP, higher mtDNA-CN is associated with reduced risk of three or more exacerbations in the subsequent year (OR 0.352 [95% CI, 0.164 to 0.753], P = 0.007). Conclusions: Asthma is characterized by mitochondrial dysfunction. Higher mtDNA-CN identifies an exacerbation-resistant asthma phenotype, suggesting mitochondrial function is important in exacerbation risk.

9.
Am J Physiol Lung Cell Mol Physiol ; 325(5): L617-L627, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37786941

RESUMO

Understanding metabolic evolution underlying pulmonary arterial hypertension (PAH) development may clarify pathobiology and reveal disease-specific biomarkers. Patients with systemic sclerosis (SSc) are regularly surveilled for PAH, presenting an opportunity to examine metabolic change as disease develops in an at-risk cohort. We performed mass spectrometry-based metabolomics on longitudinal serum samples collected before and near SSc-PAH diagnosis, compared with time-matched SSc subjects without PAH, in a SSc surveillance cohort. We validated metabolic differences in a second cohort and determined metabolite-phenotype relationships. In parallel, we performed serial metabolomic and hemodynamic assessments as the disease developed in a preclinical model. For differentially expressed metabolites, we investigated corresponding gene expression in human and rodent PAH lungs. Kynurenine and its ratio to tryptophan (kyn/trp) increased over the surveillance period in patients with SSc who developed PAH. Higher kyn/trp measured two years before diagnostic right heart catheterization increased the odds of SSc-PAH diagnosis (OR 1.57, 95% CI 1.05-2.36, P = 0.028). The slope of kyn/trp rise during SSc surveillance predicted PAH development and mortality. In both clinical and experimental PAH, higher kynurenine pathway metabolites correlated with adverse pulmonary vascular and RV measurements. In human and rodent PAH lungs, expression of TDO2, which encodes tryptophan 2,3 dioxygenase (TDO), a protein that catalyzes tryptophan conversion to kynurenine, was significantly upregulated and tightly correlated with pulmonary hypertensive features. Upregulated kynurenine pathway metabolism occurs early in PAH, localizes to the lung, and may be modulated by TDO2. Kynurenine pathway metabolites may be candidate PAH biomarkers and TDO warrants exploration as a potential novel therapeutic target.NEW & NOTEWORTHY Our study shows an early increase in kynurenine pathway metabolism in at-risk subjects with systemic sclerosis who develop pulmonary arterial hypertension (PAH). We show that kynurenine pathway upregulation precedes clinical diagnosis and that this metabolic shift is associated with increased disease severity and shorter survival times. We also show that gene expression of TDO2, an enzyme that generates kynurenine from tryptophan, rises with PAH development.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Escleroderma Sistêmico , Humanos , Hipertensão Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/complicações , Cinurenina , Triptofano , Escleroderma Sistêmico/complicações , Hipertensão Pulmonar Primária Familiar , Biomarcadores
10.
Circ Heart Fail ; 16(10): e010555, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37664964

RESUMO

BACKGROUND: Normative changes in right ventricular (RV) structure and function have not been characterized in the context of treatment-associated functional recovery (RV functional recovery [RVFnRec]). The aim of this study is to assess the clinical relevance of a proposed RVFnRec definition. METHODS: We evaluated 63 incident patients with pulmonary arterial hypertension by right heart catheterization and cardiac magnetic resonance imaging at diagnosis and cardiac magnetic resonance imaging and invasive cardiopulmonary exercise testing following treatment (≈11 months). Sex, age, ethnicity matched healthy control subjects (n=62) with 1-time cardiac magnetic resonance imaging and noninvasive cardiopulmonary exercise testing were recruited from the PVDOMICS (Redefining Pulmonary Hypertension through Pulmonary Vascular Disease Phenomics) project. We examined therapeutic cardiac magnetic resonance imaging changes relative to the evidence-based peak oxygen consumption (VO2peak)>15 mL/(kg·min) to define RVFnRec by receiver operating curve analysis. Afterload was measured as mean pulmonary artery pressure, resistance, compliance, and elastance. RESULTS: A drop in RV end-diastolic volume of -15 mL best defined RVFnRec (area under the curve, 0.87; P=0.0001) and neared upper 95% CI RV end-diastolic volume of controls. This cutoff was met by 22 out of 63 (35%) patients which was reinforced by freedom from clinical worsening, RVFnRec 1 out of 21 (5%) versus no RVFnRec 17 out of 42, 40% (log-rank P=0.006). A therapy-associated increase of 0.8 mL/mm Hg in compliance had the best predictive value of RVFnRec (area under the curve, 0.76; [95% CI, 0.64-0.88]; P=0.001). RVFnRec patients had greater increases in stroke volume, and cardiac output at exercise. CONCLUSIONS: RVFnRec defined by RV end-diastolic volume therapeutic decrease of -15 mL predicts exercise capacity, freedom from clinical worsening, and nears normalization. A therapeutic improvement of compliance is superior to other measures of afterload in predicting RVFnRec. RVFnRec is also associated with increased RV output reserve at exercise.


Assuntos
Insuficiência Cardíaca , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Disfunção Ventricular Direita , Humanos , Hipertensão Arterial Pulmonar/diagnóstico , Imageamento por Ressonância Magnética , Ventrículos do Coração/diagnóstico por imagem , Função Ventricular Direita , Artéria Pulmonar
11.
Ann Am Thorac Soc ; 20(8): 1077-1087, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37526479

RESUMO

Rationale: To identify barriers and opportunities for Ph.D., basic and translational scientists to be fully integrated into clinical units. Objectives: In 2022, an ad hoc committee of the American Thoracic Society developed a project proposal and workshop to identify opportunities and barriers for scientists who do not practice medicine to develop successful careers and achieve tenure-track faculty positions in clinical departments and divisions within academic medical centers (AMCs) in the United States. Methods: This document focuses on results from a survey of adult and pediatric pulmonary, critical care, and sleep medicine division chiefs as well as a survey of workshop participants, including faculty in departmental and school leadership roles in both basic science and clinical units within U.S. AMCs. Results: We conclude that full integration of non-clinically practicing basic and translational scientists into the clinical units, in addition to their traditional placements in basic science units, best serves the tripartite mission of AMCs to provide care, perform research, and educate the next generation. Evidence suggests clinical units do employ Ph.D. scientists in large numbers, but these faculty are often hired into non-tenure track positions, which do not provide the salary support, start-up funds, research independence, or space often associated with hiring in basic science units within the same institution. These barriers to success of Ph.D. faculty in clinical units are largely financial. Conclusions: Our recommendation is for AMCs to consider and explore some of our proposed strategies to accomplish the goal of integrating basic and translational scientists into clinical units in a meaningful way.


Assuntos
Centros Médicos Acadêmicos , Médicos , Adulto , Estados Unidos , Humanos , Criança , Seleção de Pessoal , Liderança , Docentes de Medicina
12.
bioRxiv ; 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37546956

RESUMO

Introduction: Mitochondria are increasingly recognized to play a role in the airway inflammation of asthma. Model systems to study the role of mitochondrial gene expression in bronchial epithelium are lacking. Here, we create custom bronchial epithelial cell lines derived from primary airway epithelium that are depleted of mitochondrial DNA. Methods: We treated BET-1A and BEAS-2B cells with ethidium bromide (EtBr) with or without 2',3'-dideoxycytidine (ddC) to create cells lacking mitochondrial DNA (mtDNA). Cells' mtDNA copy number were verified by quantitative polymerase chain reaction (qPCR) in comparison to nuclear DNA (nDNA). Cells were also assessed for oxidative phosphorylation by measures of oxygen consumption using the Seahorse analyzer. Results: One week of EtBr treatment led to ~95% reduction of mtDNA copy number (mtDNA-CN) in cells (mtDNA-CN, mean±SE, baseline vs. treatment: BEAS-2B, 820 ± 62 vs. 56 ± 9; BET-1A, 957 ± 52 vs. 73 ± 2), which was further reduced by addition of 25 µM ddC (mtDNA-CN: BEAS-2B, 2.8; BET-1A, 47.9). Treatment for up to three weeks with EtBr and ddC led to near complete loss of mtDNA (mtDNA-CN: BEAS-2B, 0.1; BET-1A, 0.3). The basal oxygen consumption rate (OCR) of mtDNA-depleted BET-1A and BEAS-2B cells dropped to near zero. Glycolysis measured by extracellular acidification rate (ECAR) increased ~two-fold in cells when mtDNA was eliminated [ECAR (mpH/min/103 cells), baseline vs. treatment: BEAS-2B, 0.50 ± 0.03 vs. 0.94 ± 0.10 P=0.005; BET-1A, 0.80 ± 0.04 vs. 1.14 ± 0.06 P=0.001]. Conclusion: Mitochondrial DNA-depleted BET-1A ρ0 and BEAS-2B ρ0 cell lines are viable, lack the capacity for aerobic respiration, and increase glycolysis. This cell model system can be used to further test mitochondrial mechanisms of inflammation in bronchial epithelial cells.

13.
Sci Rep ; 13(1): 9851, 2023 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-37330615

RESUMO

Congenital diaphragmatic hernia (CDH) is a neonatal anomaly that includes pulmonary hypoplasia and hypertension. We hypothesized that microvascular endothelial cell (EC) heterogeneity is different in CDH lungs and related to lung underdevelopment and remodeling. To test this, we evaluated rat fetuses at E21.5 in a nitrofen model of CDH to compare lung transcriptomes among healthy controls (2HC), nitrofen-exposed controls (NC) and nitrofen-exposed subjects with CDH. Single-cell RNA sequencing with unbiased clustering revealed 3 distinct microvascular EC clusters: a general population (mvEC), a proliferative population and a population high in hemoglobin. Only the CDH mvEC cluster had a distinct inflammatory transcriptomic signature as compared to the 2HC and NC endothelial cells, e.g. greater activation and adhesion of inflammatory cells and production of reactive oxygen species. Furthermore, CDH mvECs had downregulated Ca4, Apln and Ednrb gene expression. Those genes are markers for ECs important to lung development, gas exchange and alveolar repair (mvCa4+). mvCa4+ ECs were reduced in CDH (2HC [22.6%], NC [13.1%] and CDH [5.3%], p < 0.0001). Overall, these findings identify transcriptionally distinct microvascular endothelial cell clusters in CDH, including the distinctly inflammatory mvEC cluster and the depleted group of mvCa4+ ECs, which together may contribute to pathogenesis.


Assuntos
Hérnias Diafragmáticas Congênitas , Humanos , Ratos , Animais , Hérnias Diafragmáticas Congênitas/genética , Hérnias Diafragmáticas Congênitas/patologia , Células Endoteliais , Transcriptoma , Ratos Sprague-Dawley , Pulmão/patologia , Modelos Animais de Doenças
14.
Redox Biol ; 63: 102717, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37120930

RESUMO

Hemoglobin (Hb) present in the lung epithelium is of unknown significance. However Hb being an nitric oxide (NO) scavenger can bind to NO and reduce its deleterious effects. Hence we postulated an NO scavenging role for this lung Hb. Doing transwell co-culture with bronchial epithelial cells, A549/16-HBE (apical) and human airway smooth muscle cells (HASMCs as basal), we found that Hb can protect the smooth muscle soluble guanylyl cyclase (sGC) from excess NO. Inducing the apical A549/16-HBE cells with cytokines to trigger iNOS expression and NO generation caused a time dependent increase in SNO-sGC and this was accompanied with a concomitant drop in sGC-α1ß1 heterodimerization. Silencing Hbαß in the apical cells further increased the SNO on sGC with a faster drop in the sGC heterodimer and these effects were additive along with further silencing of thioredoxin 1 (Trx1). Since heme of Hb is critical for NO scavenging we determined the Hb heme in a mouse model of allergic asthma (OVA) and found that Hb in the inflammed OVA lungs was low in heme or heme-free relative to those of naïve lungs. Further we established a direct correlation between the status of the sGC heterodimer and the Hb heme from lung samples of human asthma, iPAH, COPD and cystic fibrosis. These findings present a new mechanism of protection of lung sGC by the epithelial Hb, and suggests that this protection maybe lost in asthma or COPD where lung Hb is unable to scavenge the NO due to it being heme-deprived.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Camundongos , Animais , Humanos , Guanilil Ciclase Solúvel/genética , Guanilil Ciclase Solúvel/metabolismo , Guanilato Ciclase/genética , Óxido Nítrico/metabolismo , Pulmão/metabolismo , Asma/genética , Músculo Liso/metabolismo , Hemoglobinas , Heme/metabolismo , Epitélio/metabolismo
15.
Eur Heart J ; 44(22): 1979-1991, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-36879444

RESUMO

AIMS: Iron deficiency is common in pulmonary hypertension, but its clinical significance and optimal definition remain unclear. METHODS AND RESULTS: Phenotypic data for 1028 patients enrolled in the Redefining Pulmonary Hypertension through Pulmonary Vascular Disease Phenomics study were analyzed. Iron deficiency was defined using the conventional heart failure definition and also based upon optimal cut-points associated with impaired peak oxygen consumption (peakVO2), 6-min walk test distance, and 36-Item Short Form Survey (SF-36) scores. The relationships between iron deficiency and cardiac and pulmonary vascular function and structure and outcomes were assessed. The heart failure definition of iron deficiency endorsed by pulmonary hypertension guidelines did not identify patients with reduced peakVO2, 6-min walk test, and SF-36 (P > 0.208 for all), but defining iron deficiency as transferrin saturation (TSAT) <21% did. Compared to those with TSAT ≥21%, patients with TSAT <21% demonstrated lower peakVO2 [absolute difference: -1.89 (-2.73 to -1.04) mL/kg/min], 6-min walk test distance [absolute difference: -34 (-51 to -17) m], and SF-36 physical component score [absolute difference: -2.5 (-1.3 to -3.8)] after adjusting for age, sex, and hemoglobin (all P < 0.001). Patients with a TSAT <21% had more right ventricular remodeling on cardiac magnetic resonance but similar pulmonary vascular resistance on catheterization. Transferrin saturation <21% was also associated with increased mortality risk (hazard ratio 1.63, 95% confidence interval 1.13-2.34; P = 0.009) after adjusting for sex, age, hemoglobin, and N-terminal pro-B-type natriuretic peptide. CONCLUSION: The definition of iron deficiency in the 2022 European Society of Cardiology (ESC)/European Respiratory Society (ERS) pulmonary hypertension guidelines does not identify patients with lower exercise capacity or functional status, while a definition of TSAT <21% identifies patients with lower exercise capacity, worse functional status, right heart remodeling, and adverse clinical outcomes.


Assuntos
Anemia Ferropriva , Insuficiência Cardíaca , Hipertensão Pulmonar , Deficiências de Ferro , Humanos , Anemia Ferropriva/complicações , Hemoglobinas , Transferrinas
16.
J Asthma ; 60(10): 1824-1835, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36946148

RESUMO

OBJECTIVE: Genome-wide association studies (GWASs) have identified single nucleotide polymorphisms (SNPs) in chr11p15.5 region associated with asthma and idiopathic interstitial pneumonias (IIPs). We sought to identify functional genes for asthma by combining SNPs and mRNA expression in bronchial epithelial cells (BEC) in the Severe Asthma Research Program (SARP). METHODS: Correlation analyses of mRNA expression of six candidate genes (AP2A2, MUC6, MUC2, MUC5AC, MUC5B, and TOLLIP) and asthma phenotypes were performed in the longitudinal cohort (n = 156) with RNAseq in BEC, and replicated in the cross-sectional cohort (n = 155). eQTL (n = 114) and genetic association analysis of asthma severity (426 severe vs. 531 non-severe asthma) were performed, and compared with previously published GWASs of IIPs and asthma. RESULTS: Higher expression of AP2A2 and MUC5AC and lower expression of MUC5B in BEC were correlated with asthma, asthma exacerbations, and T2 biomarkers (P < 0.01). SNPs associated with asthma and IIPs in previous GWASs were eQTL SNPs for MUC5AC, MUC5B, or TOLLIP, however, they were not in strong linkage disequilibrium. The risk alleles for asthma or protective alleles for IIPs were associated with higher expression of MUC5AC and lower expression of MUC5B. rs11603634, rs12788104, and rs28415845 associated with moderate-to-severe asthma or adult onset asthma in previous GWASs were not associated with asthma severity (P > 0.8). CONCLUSIONS: SNPs associated with asthma in chr11p15.5 region are not associated with asthma severity neither with IIPs. Higher expression of MUC5AC and lower expression of MUC5B are risk for asthma but protective for IIPs.


Assuntos
Asma , Humanos , Asma/genética , Estudo de Associação Genômica Ampla , Estudos Transversais , Fenótipo , RNA Mensageiro , Mucina-5B/genética , Mucina-5AC/genética
17.
J Asthma ; 60(10): 1843-1852, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36940238

RESUMO

OBJECTIVE: Subphenotypes of asthma may be determined by age onset and atopic status. We sought to characterize early or late onset atopic asthma with fungal or non-fungal sensitization (AAFS or AANFS) and non-atopic asthma (NAA) in children and adults in the Severe Asthma Research Program (SARP). SARP is an ongoing project involving well-phenotyped patients with mild to severe asthma. METHODS: Phenotypic comparisons were performed using Kruskal-Wallis or chi-square test. Genetic association analyses were performed using logistic or linear regression. RESULTS: Airway hyper-responsiveness, total serum IgE levels, and T2 biomarkers showed an increasing trend from NAA to AANFS and then to AAFS. Children and adults with early onset asthma had greater % of AAFS than adults with late onset asthma (46% and 40% vs. 32%; P < 0.00001). In children, AAFS and AANFS had lower % predicted FEV1 (86% and 91% vs. 97%) and greater % of patients with severe asthma than NAA (61% and 59% vs. 43%). In adults with early or late onset asthma, NAA had greater % of patients with severe asthma than AANFS and AAFS (61% vs. 40% and 37% or 56% vs. 44% and 49%). The G allele of rs2872507 in GSDMB had higher frequency in AAFS than AANFS and NAA (0.63 vs. 0.55 and 0.55), and associated with earlier age onset and asthma severity. CONCLUSIONS: Early or late onset AAFS, AANFS, and NAA have shared and distinct phenotypic characteristics in children and adults. AAFS is a complex disorder involving genetic susceptibility and environmental factors.


Assuntos
Asma , Hipersensibilidade Imediata , Criança , Adulto , Humanos , Asma/diagnóstico , Asma/genética , Estudos Longitudinais , Biomarcadores , Testes de Função Respiratória
18.
bioRxiv ; 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36945569

RESUMO

Almost 20% of patients with COVID-19 experience long-term effects, known as post-COVID condition or long COVID. Among many lingering neurologic symptoms, chronic headache is the most common. Despite this health concern, the etiology of long COVID headache is still not well characterized. Here, we present a longitudinal multi-omics analysis of blood leukocyte transcriptomics, plasma proteomics and metabolomics of long COVID patients with chronic headache. Long COVID patients experienced a state of hyper-inflammation prior to chronic headache onset and maintained persistent inflammatory activation throughout the progression of chronic headache. Metabolomic analysis also revealed augmented arginine and lipid metabolisms, skewing towards a nitric oxide-based pro-inflammation. Furthermore, metabolisms of neurotransmitters including serotonin, dopamine, glutamate, and GABA were markedly dysregulated during the progression of long COVID headache. Overall, these findings illustrate the immuno-metabolomics landscape of long COVID patients with chronic headache, which may provide insights to potential therapeutic interventions.

19.
medRxiv ; 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36824981

RESUMO

Background: Normative changes in right ventricular (RV) structure and function have not been characterized in the context of treatment-associated functional recovery (RVFnRec). The aim of this study is to assess the clinical relevance of a proposed RVFnRec definition. Methods: We evaluated 63 incident patients with PAH by right heart catheterization and cardiac MRI (CMR) at diagnosis and CMR and invasive cardiopulmonary exercise (CPET) following treatment (∻11 months). Sex, age, race/ethnicity matched healthy control subjects (n=62) with one-time CMR and non-invasive CPET were recruited from the PVDOMICS project. We examined therapeutic CMR changes relative to the evidence-based peak oxygen consumption (VO2 peak )>15mL/kg/min to define RVFnRec by receiver operating curve analysis. Afterload was measured in the as mean pulmonary artery pressure, resistance, compliance, and elastance. Results: A drop in RV end-diastolic volume of -15 mL best defined RVFnRec (AUC 0.87, P=0.0001) and neared upper 95% CI RVEDV of controls. 22/63 (35%) of subjects met this cutoff which was reinforced by freedom from clinical worsening, RVFnRec 1/21 (5%) versus no RVFnRec 17/42, 40%, (log rank P=0.006). A therapy-associated increase of 0.8 mL/mmHg in compliance had the best predictive value of RVFnRec (AUC 0.76, CI 0.64-0.88, P=0.001). RVFnRec subjects had greater increases in stroke volume, and cardiac output at exercise. Conclusions: RVFnRec defined by RVEDV therapeutic decrease of -15mL predicts exercise capacity, freedom from clinical worsening, and nears normalization. A therapeutic improvement of compliance is superior to other measures of afterload in predicting RVFnRec. RVFnRec is also associated with increased RV output reserve at exercise. Clinical Perspective: What is new?: Right ventricular functional recovery (RVFnRec) represents a novel endpoint of therapeutic success in PAH. We define RVFnRec as treatment associated normative RV changes related to function (peak oxygen consumption). Normative RV imaging changes are compared to a well phenotyped age, sex, and race/ethnicity matched healthy control cohort from the PVDOMICS project. Previous studies have focused on RV ejection fraction improvements. However, we show that changes in RVEDV are perhaps more important in that improvements in LV function also occur. Lastly, RVFnRec is best predicted by improvements in pulmonary artery compliance versus pulmonary vascular resistance, a more often cited metric of RV afterload.What are the clinical implications?: RVFnRec represents a potential non-invasive assessment of clinical improvement and therapeutic response. Clinicians with access to cardiac MRI can obtain a limited scan (i.e., ventricular volumes) before and after treatment. Future study should examine echocardiographic correlates of RVFnRec.

20.
J Allergy Clin Immunol ; 151(6): 1513-1524, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36796454

RESUMO

BACKGROUND: Inhaled corticosteroids (CSs) are the backbone of asthma treatment, improving quality of life, exacerbation rates, and mortality. Although effective for most, a subset of patients with asthma experience CS-resistant disease despite receiving high-dose medication. OBJECTIVE: We sought to investigate the transcriptomic response of bronchial epithelial cells (BECs) to inhaled CSs. METHODS: Independent component analysis was performed on datasets, detailing the transcriptional response of BECs to CS treatment. The expression of these CS-response components was examined in 2 patient cohorts and investigated in relation to clinical parameters. Supervised learning was used to predict BEC CS responses using peripheral blood gene expression. RESULTS: We identified a signature of CS response that was closely correlated with CS use in patients with asthma. Participants could be separated on the basis of CS-response genes into groups with high and low signature expression. Patients with low expression of CS-response genes, particularly those with a severe asthma diagnosis, showed worse lung function and quality of life. These individuals demonstrated enrichment for T-lymphocyte infiltration in endobronchial brushings. Supervised machine learning identified a 7-gene signature from peripheral blood that reliably identified patients with poor CS-response expression in BECs. CONCLUSIONS: Loss of CS transcriptional responses within bronchial epithelium was related to impaired lung function and poor quality of life, particularly in patients with severe asthma. These individuals were identified using minimally invasive blood sampling, suggesting these findings may enable earlier triage to alternative treatments.


Assuntos
Asma , Qualidade de Vida , Humanos , Asma/tratamento farmacológico , Asma/genética , Asma/diagnóstico , Células Epiteliais/metabolismo , Corticosteroides/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...