Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36298125

RESUMO

This article presents the development of a power loss emulation (PLE) system device to study and find ways of mitigating skin tissue heating effects in transcutaneous energy transmission systems (TETS) for existing and next generation left ventricular assist devices (LVADs). Skin thermal profile measurements were made using the PLE system prototype and also separately with a TETS in a porcine model. Subsequent data analysis and separate computer modelling studies permit understanding of the contribution of tissue blood perfusion towards cooling of the subcutaneous tissue around the electromagnetic coupling area. A 2-channel PLE system prototype and a 2-channel TETS prototype were implemented for this study. The heating effects resulting from power transmission inefficiency were investigated under varying conditions of power delivery levels for an implanted device. In the part of the study using the PLE setup, the implanted heating element was placed subcutaneously 6-8 mm below the body surface of in vivo porcine model skin. Two operating modes of transmission coupling power losses were emulated: (a) conventional continuous transmission, and (b) using our proposed pulsed transmission waveform protocols. Experimental skin tissue thermal profiles were studied for various levels of LVAD power. The heating coefficient was estimated from the porcine model measurements (an in vivo living model and a euthanised cadaver model without blood circulation at the end of the experiment). An in silico model to support data interpretation provided reliable experimental and numerical methods for effective wireless transdermal LVAD energization advanced solutions. In the separate second part of the study conducted with a separate set of pigs, a two-channel inductively coupled RF driving system implemented wireless power transfer (WPT) to a resistive LVAD model (50 Ω) to explore continuous versus pulsed RF transmission modes. The RF-transmission pulse duration ranged from 30 ms to 480 ms, and the idle time (no-transmission) from 5 s to 120 s. The results revealed that blood perfusion plays an important cooling role in reducing thermal tissue damage from TETS applications. In addition, the results analysis of the in vivo, cadaver (R1Sp2) model, and in silico studies confirmed that the tissue heating effect was significantly lower in the living model versus the cadaver model due to the presence of blood perfusion cooling effects.


Assuntos
Coração Auxiliar , Calefação , Suínos , Animais , Transferência de Energia , Simulação por Computador , Cadáver
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 1861-1864, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29060253

RESUMO

The use of wearable dry sensors for recording long term ECG signals is a requirement for certain studies of heart rhythm. Knowledge of the skin-electrode electrical performance of dry electrodes is necessary when seeking to improve various processing stages for signal quality enhancement. In this paper, methods for the assessment of dry skin-electrode impedance (ZSE) and its modelling are presented. Measurements were carried out on selected electrode materials such as silver, stainless steel, AgCl (dry) and polyurethane. These had ZSE values between 500 kΩ and 1 MΩ within the main ECG frequency range (1 Hz - 100 Hz); in contrast to plain iron material which had a significantly higher impedance. However, in spite of the high ZSE values, open bandwidth ECG traces were of acceptable quality and stability; with dry AgCl material offering the best ECG trace performance.


Assuntos
Eletrodos , Espectroscopia Dielétrica , Impedância Elétrica , Pele , Aço Inoxidável , Dispositivos Eletrônicos Vestíveis
3.
Resuscitation ; 85(3): 343-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24291591

RESUMO

BACKGROUND: Algorithms to predict shock success based on VF waveform metrics could significantly enhance resuscitation by optimising the timing of defibrillation. OBJECTIVE: To investigate robust methods of predicting defibrillation success in VF cardiac arrest patients, by using a support vector machine (SVM) optimisation approach. METHODS: Frequency-domain (AMSA, dominant frequency and median frequency) and time-domain (slope and RMS amplitude) VF waveform metrics were calculated in a 4.1Y window prior to defibrillation. Conventional prediction test validity of each waveform parameter was conducted and used AUC>0.6 as the criterion for inclusion as a corroborative attribute processed by the SVM classification model. The latter used a Gaussian radial-basis-function (RBF) kernel and the error penalty factor C was fixed to 1. A two-fold cross-validation resampling technique was employed. RESULTS: A total of 41 patients had 115 defibrillation instances. AMSA, slope and RMS waveform metrics performed test validation with AUC>0.6 for predicting termination of VF and return-to-organised rhythm. Predictive accuracy of the optimised SVM design for termination of VF was 81.9% (± 1.24 SD); positive and negative predictivity were respectively 84.3% (± 1.98 SD) and 77.4% (± 1.24 SD); sensitivity and specificity were 87.6% (± 2.69 SD) and 71.6% (± 9.38 SD) respectively. CONCLUSIONS: AMSA, slope and RMS were the best VF waveform frequency-time parameters predictors of termination of VF according to test validity assessment. This a priori can be used for a simplified SVM optimised design that combines the predictive attributes of these VF waveform metrics for improved prediction accuracy and generalisation performance without requiring the definition of any threshold value on waveform metrics.


Assuntos
Cardioversão Elétrica , Parada Cardíaca/fisiopatologia , Parada Cardíaca/terapia , Máquina de Vetores de Suporte , Feminino , Parada Cardíaca/complicações , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Resultado do Tratamento , Fibrilação Ventricular/complicações , Fibrilação Ventricular/fisiopatologia , Fibrilação Ventricular/terapia
4.
J Electrocardiol ; 44(6): 689-93, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22018484

RESUMO

INTRODUCTION: A novel atrial defibrillator was developed at the Royal Victoria Hospital in collaboration with the Nanotechnology and Integrated Bio-Engineering Centre, University of Ulster. This device is powered by an external pulse of radiofrequency energy and designed to cardiovert using low-tilt monophasic waveform (LTMW) and low-tilt biphasic waveform (LTBW), 12 milliseconds pulse width. This study compared the safety and efficacy of LTMW with LTBW for transvenous cardioversion of atrial fibrillation (AF). METHODS: Patients were anticoagulated with warfarin to maintain International Normalized Ratio between 2 and 3 for 4 weeks prior cardioversion. Warfarin international normalized ratio level was maintained in between 2 and 3 for 4 weeks prior cardioversion. St Jude's defibrillating catheter was positioned in the distal coronary sinus and right atrium and connected to the defibrillator via a junction box. After a test shock using a dummy load, the patient was cardioverted in a step-up progression from 50 to 300 V. Shock success was defined as return of sinus rhythm for 30 seconds or more. If cardioversion was unsuccessful at peak voltage, the patient was crossed over to the other arm of the waveform type and cardioverted at peak voltage. RESULTS: Thirty patients were randomized equally to LTBW and LTMW (15 each). Seven out of 15 patients (46%) cardioverted to sinus rhythm with LTBW, and 1 (6%) of 15, with LTMW (P = .035). Including crossover patients, 14 patients (46%) converted to sinus rhythm. After crossover, 4 patients were cardioverted with LTBW and 2 with LTMW. Overall mean voltage, current, and energy used for cardioversion were 270.53 ± 35.96 V, 3.68 ± 0.80 A, and 9.12 ± 3.73 J, respectively, and intracardiac impedance was 70.82 ± 13.46 Ω. For patients who were successfully cardioverted, mean voltage, current, energy, and intracardiac impedance were 268.28 ± 42.41 V, 3.52 ± 0.63 A, 8.51 ± 3.16 J, and 73.92 ± 12.01 Ω. There were no major adverse complications during the study. Cardiac markers measured postcardioversion were unremarkable. CONCLUSION: Low-tilt biphasic waveform was more efficacious for low-energy transvenous cardioversion of AF. A significant proportion of patients were successfully cardioverted to sinus rhythm with low energy. Radiofrequency-powered defibrillation can be safely used for transvenous cardioversion of AF.


Assuntos
Fibrilação Atrial/terapia , Desfibriladores Implantáveis , Cardioversão Elétrica/métodos , Idoso , Cateterismo Cardíaco , Cardioversão Elétrica/instrumentação , Humanos , Pessoa de Meia-Idade , Varfarina/administração & dosagem
5.
Artigo em Inglês | MEDLINE | ID: mdl-22254655

RESUMO

An algorithm based only on the impedance cardiogram (ICG) recorded through two defibrillation pads, using the strongest frequency component and amplitude, incorporated into a defibrillator could determine circulatory arrest and reduce delays in starting cardiopulmonary resuscitation (CPR). Frequency analysis of the ICG signal is carried out by integer filters on a sample by sample basis. They are simpler, lighter and more versatile when compared to the FFT. This alternative approach, although less accurate, is preferred due to the limited processing capacity of devices that could compromise real time usability of the FFT. These two techniques were compared across a data set comprising 13 cases of cardiac arrest and 6 normal controls. The best filters were refined on this training set and an algorithm for the detection of cardiac arrest was trained on a wider data set. The algorithm was finally tested on a validation set. The ICG was recorded in 132 cardiac arrest patients (53 training, 79 validation) and 97 controls (47 training, 50 validation): the diagnostic algorithm indicated cardiac arrest with a sensitivity of 81.1% (77.6-84.3) and specificity of 97.1% (96.7-97.4) for the validation set (95% confidence intervals). Automated defibrillators with integrated ICG analysis have the potential to improve emergency care by lay persons enabling more rapid and appropriate initiation of CPR and when combined with ECG analysis they could improve on the detection of cardiac arrest.


Assuntos
Algoritmos , Cardiografia de Impedância/métodos , Diagnóstico por Computador/métodos , Cardioversão Elétrica/métodos , Parada Cardíaca/diagnóstico , Parada Cardíaca/prevenção & controle , Cardiografia de Impedância/instrumentação , Cardioversão Elétrica/instrumentação , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
Europace ; 8(10): 873-80, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17000635

RESUMO

AIMS: To investigate the feasibility and efficacy of novel low-tilt biphasic waveforms in transvenous cardioversion of atrial fibrillation (AF), delivered by a radiofrequency-powered defibrillator. METHODS AND RESULTS: The investigation was performed in three phases in an animal model of AF: a feasibility and efficacy study (in 10 adult Large White Landrace swine), comparison with low-tilt monophasic and standard capacitor-based waveforms, and an assessment of sequential shocks delivered over several pathways (in 15 adult Suffolk sheep). Defibrillation electrodes were positioned transvenously under fluoroscopic control in the high lateral right atrium and distal coronary sinus. When multiple defibrillation pathways were tested, a third electrode was also attached to the lower interatrial septum. The electrodes were then connected to a radiofrequency (RF)-powered defibrillator or a standard defibrillator. After confirmation of successful induction of sustained AF, defibrillation was attempted. Percentage success was calculated from the effects of all shocks delivered to all the animals within each set of experiments. Of the low-tilt (RF) biphasic waveforms delivered during internal atrial cardioversion, 100% success was achieved with a 6/6 ms 100/-50 V waveform (1.45+/-0.01 J). This waveform was similar in efficacy to low-tilt (RF) monophasic waveforms (88 vs. 92% success, 1.58+/-0.01 vs. 2.67+/-0.03 J; P=NS; delivered energy 41% lower) and superior to equivalent voltage standard monophasic (50% success, 0.67+/-0.00 J; P<0.001) and biphasic waveforms (72% success, 0.69+/-0.00 J; P=0.03). Sequential shocks delivered over dual pathways did not improve the efficacy of low-tilt biphasic waveforms. CONCLUSION: A low-tilt biphasic waveform from a RF-powered defibrillator (6/6 ms 100/-50 V) is more efficacious than standard monophasic or biphasic waveforms (equivalent voltage) and is similar in efficacy to low-tilt monophasic waveforms.


Assuntos
Fibrilação Atrial/terapia , Desfibriladores , Animais , Desenho de Equipamento , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...