Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 7(12): 3161-3167, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34709785

RESUMO

Bacterial infections continue to represent a major worldwide health hazard following the emergence of drug-resistant pathogenic strains. Pseudomonas aeruginosa is an opportunistic pathogen causing nosocomial infections with increased morbidity and mortality. The increasing antibiotic resistance in P. aeruginosa has led to an unmet need for discovery of new antibiotic candidates. Bacterial protein synthesis is an essential metabolic process and a validated target for antibiotic development; however, the precise structural mechanism in P. aeruginosa remains unknown. In this work, the interaction of P. aeruginosa initiation factor 1 (IF1) with the 30S ribosomal subunit was studied by NMR, which enabled us to construct a structure of IF1-bound 30S complex. A short α-helix in IF1 was found to be critical for IF1 ribosomal binding and function. A peptide derived from this α-helix was tested and displayed a high ability to inhibit bacterial growth. These results provide a clue for rational design of new antimicrobials.


Assuntos
Peptídeos Antimicrobianos , Pseudomonas aeruginosa , Fatores de Iniciação de Peptídeos , Subunidades Ribossômicas , Ribossomos
2.
SLAS Discov ; 25(9): 1072-1086, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32583746

RESUMO

Pseudomonas aeruginosa is a multidrug-resistant (MDR) pathogen and a causative agent of both nosocomial and community-acquired infections. The genes (tyrS and tyrZ) encoding both forms of P. aeruginosa tyrosyl-tRNA synthetase (TyrRS-S and TyrRS-Z) were cloned and the resulting proteins purified. TyrRS-S and TyrRS-Z were kinetically evaluated and the Km values for interaction with Tyr, ATP, and tRNATyr were 172, 204, and 1.5 µM and 29, 496, and 1.9 µM, respectively. The kcatobs values for interaction with Tyr, ATP, and tRNATyr were calculated to be 3.8, 1.0, and 0.2 s-1 and 3.1, 3.8, and 1.9 s-1, respectively. Using scintillation proximity assay (SPA) technology, a druglike 2000-compound library was screened to identify inhibitors of the enzymes. Four compounds (BCD37H06, BCD38C11, BCD49D09, and BCD54B04) were identified with inhibitory activity against TyrRS-S. BCD38C11 also inhibited TyrRS-Z. The IC50 values for BCD37H06, BCD38C11, BCD49D09, and BCD54B04 against TyrRS-S were 24, 71, 65, and 50 µM, respectively, while the IC50 value for BCD38C11 against TyrRS-Z was 241 µM. Minimum inhibitory concentrations (MICs) were determined against a panel of clinically important pathogens. All four compounds were observed to inhibit the growth of cultures of both Gram-positive and Gram-negative bacteria organisms with a bacteriostatic mode of action. When tested against human cell cultures, none of the compounds were toxic at concentrations up to 400 µg/mL. In mechanism of inhibition studies, BCD38C11 and BCD49D09 selectively inhibited TyrRS activity by competing with ATP for binding. BCD37H06 and BCD54B04 inhibited TyrRS activity by a mechanism other than substrate competition.


Assuntos
Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Pseudomonas aeruginosa/genética , Tirosina-tRNA Ligase/antagonistas & inibidores , Antibacterianos/química , Infecções Comunitárias Adquiridas/genética , Infecções Comunitárias Adquiridas/microbiologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Inibidores Enzimáticos/química , Humanos , Cinética , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/patogenicidade , Tirosina-tRNA Ligase/genética
3.
Protein Sci ; 29(4): 905-918, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31833153

RESUMO

Pseudomonas aeruginosa has a high potential for developing resistance to multiple antibiotics. The gene (glnS) encoding glutaminyl-tRNA synthetase (GlnRS) from P. aeruginosa was cloned and the resulting protein characterized. GlnRS was kinetically evaluated and the KM and kcatobs , governing interactions with tRNA, were 1.0 µM and 0.15 s-1 , respectively. The crystal structure of the α2 form of P. aeruginosa GlnRS was solved to 1.9 Å resolution. The amino acid sequence and structure of P. aeruginosa GlnRS were analyzed and compared to that of GlnRS from Escherichia coli. Amino acids that interact with ATP, glutamine, and tRNA are well conserved and structure overlays indicate that both GlnRS proteins conform to a similar three-dimensional structure. GlnRS was developed into a screening platform using scintillation proximity assay technology and used to screen ~2,000 chemical compounds. Three inhibitory compounds were identified and analyzed for enzymatic inhibition as well as minimum inhibitory concentrations against clinically relevant bacterial strains. Two of the compounds, BM02E04 and BM04H03, were selected for further studies. These compounds displayed broad-spectrum antibacterial activity and exhibited moderate inhibitory activity against mutant efflux deficient strains of P. aeruginosa and E. coli. Growth of wild-type strains was unaffected, indicating that efflux was likely responsible for the lack of sensitivity. The global mode of action was determined using time-kill kinetics. BM04H03 did not inhibit the growth of human cell cultures at any concentration and BM02E04 only inhibit cultures at the highest concentration tested (400 µg/ml). In conclusion, GlnRS from P. aeruginosa is shown to have a structure similar to that of E. coli GlnRS and two natural product compounds were identified as inhibitors of P. aeruginosa GlnRS with the potential for utility as lead candidates in antibacterial drug development in a time of increased antibiotic resistance.


Assuntos
Aminoacil-tRNA Sintetases/antagonistas & inibidores , Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/metabolismo , Antibacterianos/química , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Cinética , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pseudomonas aeruginosa/enzimologia
4.
Protein Sci ; 28(4): 727-737, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30666738

RESUMO

Pseudomonas aeruginosa is an opportunistic multi-drug resistant pathogen implicated as a causative agent in nosocomial and community acquired bacterial infections. The gene encoding prolyl-tRNA synthetase (ProRS) from P. aeruginosa was overexpressed in Escherichia coli and the resulting protein was characterized. ProRS was kinetically evaluated and the KM values for interactions with ATP, proline, and tRNA were 154, 122, and 5.5 µM, respectively. The turn-over numbers, kcatobs , for interactions with these substrates were calculated to be 5.5, 6.3, and 0.2 s-1 , respectively. The crystal structure of the α2 form of P. aeruginosa ProRS was solved to 2.60 Å resolution. The amino acid sequence and X-ray crystal structure of P. aeruginosa ProRS was analyzed and compared with homologs in which the crystal structures have been solved. The amino acids that interact with ATP and proline are well conserved in the active site region and overlay of the crystal structure with ProRS homologs conforms to a similar overall three-dimensional structure. ProRS was developed into a screening platform using scintillation proximity assay (SPA) technology and used to screen 890 chemical compounds, resulting in the identification of two inhibitory compounds, BT06A02 and BT07H05. This work confirms the utility of a screening system based on the functionality of ProRS from P. aeruginosa.


Assuntos
Aminoacil-tRNA Sintetases/química , Proteínas de Bactérias/química , Pseudomonas aeruginosa/química , Aminoacil-tRNA Sintetases/antagonistas & inibidores , Aminoacil-tRNA Sintetases/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Proteica , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...