Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 4(4): 1173-1181, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36131766

RESUMO

We explore numerically and experimentally the formation of hybridized modes between a bright mode displayed by a gold nanodisc and either dark or bright modes of a nanorod - both elements being either separated by a nanometer-size gap (disconnected system) or relied on a metal junction (connected system). In terms of modeling, we compare the scattering or absorption spectra and field distributions obtained under oblique-incidence plane wave illumination with quasi-normal mode computation and an analytical model based on a coupled oscillator model. Both connected and disconnected systems have very different plasmon properties in longitudinal polarization. The disconnected system can be consistently understood in terms of the nature of hybridized modes and coupling strength using either QNMs or coupled oscillator model; however the connected configuration presents intriguing peculiarities based on the strong redistribution of charges implied by the presence of the metal connection. In practice, the fabrication of disconnected or connected configurations depends on the mitigation of lithographic proximity effects inherent to top-down lithography methods, which can lead to the formation of small metal junctions, while careful lithographic dosing allows one to fabricate disconnected systems with a gap as low as 20 nm. We obtained a very good agreement between experimentally measured scattering spectra and numerical predictions. The methods and analyses presented in this work can be applied to a wide range of systems, for potential applications in light-matter interactions, biosensing or strain monitoring.

2.
Sci Rep ; 12(1): 14044, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982212

RESUMO

Nanostructures exhibiting optical resonances (so-called nanoantennas) have strong potential for applications in color printing and filtering with sub-wavelength resolution. While small scale demonstrations of these systems are interesting as a proof-of-concept, their large scale and volume fabrication requires deeper analysis and further development for industrial adoption. Here, we evaluate the color quality produced by large size nanoantenna arrays fabricated on a 12-in. wafer using deep UV immersion photolithography and dry etching processes. The color reproduction and quality are analyzed in context of the CIE color diagram, showing that a vivid and vibrant color palette, almost fully covering the sRGB color space, can be obtained with this mass-manufacturing-ready fabrication process. The obtained results, thus, provide a solid foundation for the potential industrial adoption of this emerging technology and expose the limits and challenges of the process.

3.
Nanotechnology ; 31(22): 225302, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32040944

RESUMO

The ability to fabricate nanocones with precise dimensions is essential for several emerging applications. We demonstrate here a method which can be used to fabricate arrays of gold nanocones with high dimensional precision using lithographic and lift-off means. electron beam (ebeam) writing of a spin-coated PMMA-based bilayer resist deposited onto silicon wafers is used to form a shadow mask. This mask gradually closes as the deposition of gold (using ebeam evaporation) proceeds-the result is arrays of gold nanocones on the silicon wafer surface after lift-off of the resist. Observations using scanning electron microscopy enable a statistical study of the dimensions of 360 gold nanocones-the results demonstrate the high precision of the nanocones dimensions. The fabrication process enables the creation of arrays of nanocones with a base diameter varying from 53.6 ± 2.1 nm to 94.1 ± 2.4 nm, a vertical height ranging from 71.3 ± 4.1 nm to 153.4 ± 3.4 nm, and an apex radius of curvature ranging from 8.4 ± 1.2 nm to 11.6 ± 1.5 nm. The results are compared with the predictions of a deposition model which considers the evolving shadow masking during the gold deposition to compute the nanocone profile.

4.
Sci Rep ; 9(1): 7682, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118461

RESUMO

Here, we demonstrate a simple top-down method for nanotechnology whereby electron beam (ebeam) lithography can be combined with tilted, rotated thermal evaporation to control the topography and size of an assortment of metallic objects at the nanometre scale. In order to do this, the evaporation tilt angle is varied between 1 and 24°. The technique allows the 3-dimensional tailoring of a range of metallic object shapes from sharp, flat bottomed spikes to hollow cylinders and rings-all of which have rotational symmetry and whose critical dimensions are much smaller than the lithographic feature size. The lithographic feature size is varied from 400 nm down to 40 nm. The nanostructures are characterized using electron microscopy techniques-the specific shape can be predicted using topographic modelling of the deposition. Although individual nanostructures are studied here, the idea can easily be extended to fabricate arrays for e.g. photonics and metamaterials. Being a generic technique-depending on easily controlled lithographic and evaporation parameters-it can be readily incorporated into any standard planar process and could be adapted to suit other thin-film materials deposited using physical means.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...