Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Pharmaceutics ; 16(2)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38399348

RESUMO

The short precorneal residence time of ophthalmic drops is associated with their low absorption; therefore, the development of ocular inserts capable of prolonging and controlling the ophthalmic release of drugs is an interesting option in the design and development of these drugs. A surface response design was developed, specifically the Central Composite Design (CCD), to produce ophthalmic films loaded with Dexamethasone (DEX) by the solvent evaporation method having experimental levels of different concentrations of previously selected polymers (PVP K-30 and Eudragit RS100.). Once optimization of the formulation was obtained, the in vivo test was continued. The optimal formulation obtained a thickness of 0.265 ± 0.095 mm, pH of 7.11 ± 0.04, tensile strength of 15.50 ± 3.94 gF, humidity (%) of 22.54 ± 1.7, mucoadhesion strength of 16.89 ± 3.46 gF, chemical content (%) of 98.19 ± 1.124, release of (%) 13,510.71, and swelling of 0.0403 ± 0.023 g; furthermore, in the in vivo testing the number and residence time of PMN cells were lower compared to the Ophthalmic Drops. The present study confirms the potential use of polymeric systems using PVPK30 and ERS100 as a new strategy of controlled release of ophthalmic drugs by controlling and prolonging the release of DEX at the affected site by decreasing the systemic effects of the drug.

2.
Biomolecules ; 14(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38254678

RESUMO

Lactoferrin (LF) is a glycoprotein that binds to iron ions (Fe2+) and other metallic ions, such as Mg2+, Zn2+, and Cu2+, and has antibacterial and immunomodulatory properties. The antibacterial properties of LF are due to its ability to sequester iron. The immunomodulatory capability of LF promotes homeostasis in the enteric environment, acting directly on the beneficial microbiota. LF can modulate antigen-presenting cell (APC) biology, including migration and cell activation. Nonetheless, some gut microbiota strains produce toxic metabolites, and APCs are responsible for initiating the process that inhibits the inflammatory response against them. Thus, eliminating harmful strains lowers the risk of inducing chronic inflammation, and consequently, metabolic disease, which can progress to type 2 diabetes mellitus (T2DM). LF and retinoic acid (RA) exhibit immunomodulatory properties such as decreasing cytokine production, thus modifying the inflammatory response. Their activities have been observed both in vitro and in vivo. The combined, simultaneous effect of these molecules has not been studied; however, the synergistic effect of LF and RA may be employed for enhancing the secretion of humoral factors, such as IgA. We speculate that the combination of LF and RA could be a potential prophylactic alternative for the treatment of metabolic dysregulations such as T2DM. The present review focuses on the importance of a healthy diet for a balanced gut and describes how probiotics and prebiotics with immunomodulatory activity as well as inductors of differentiation and cell proliferation could be acquired directly from the diet or indirectly through the oral administration of formulations aimed to maintain gut health or restore a eubiotic state in an intestinal environment that has been dysregulated by external factors such as stress and a high-fat diet.


Assuntos
Diabetes Mellitus Tipo 2 , Tretinoína , Humanos , Tretinoína/farmacologia , Lactoferrina/farmacologia , Homeostase , Antibacterianos , Íons , Ferro
3.
Pharmaceutics ; 15(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37376082

RESUMO

A healing material must have desirable characteristics such as maintaining a physiological environment, protective barrier-forming abilities, exudate absorption, easy handling, and non-toxicity. Laponite is a synthetic clay with properties such as swelling, physical crosslinking, rheological stability, and drug entrapment, making it an interesting alternative for developing new dressings. This study evaluated its performance in lecithin/gelatin composites (LGL) as well as with the addition of maltodextrin/sodium ascorbate mixture (LGL MAS). These materials were applied as nanoparticles, dispersed, and prepared by using the gelatin desolvation method-eventually being turned into films via the solvent-casting method. Both types of composites were also studied as dispersions and films. Dynamic Light Scattering (DLS) and rheological techniques were used to characterize the dispersions, while the films' mechanical properties and drug release were determined. Laponite in an amount of 8.8 mg developed the optimal composites, reducing the particulate size and avoiding the agglomeration by its physical crosslinker and amphoteric properties. On the films, it enhanced the swelling and provided stability below 50 °C. Moreover, the study of drug release in maltodextrin and sodium ascorbate from LGL MAS was fitted to first-order and Korsmeyer-Peppas models, respectively. The aforementioned systems represent an interesting, innovative, and promising alternative in the field of healing materials.

4.
Polymers (Basel) ; 15(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37376256

RESUMO

The objective of this study was to create polymeric dressings, microfibers, and microneedles (MN) loaded with ceftriaxone, using PMVA (Poly (Methyl vinyl ether-alt-maleic acid), Kollicoat® 100P, and Kollicoat® Protect as polymers to treat diabetic wounds and accelerate their recovery. These formulations were optimized through a series of experiments and were subsequently subjected to physicochemical tests. The results of the characterization of the dressings, microfibers, and microneedles (PMVA and 100P) were, respectively, a bioadhesion of 281.34, 720, 720, 2487, and 510.5 gf; a post-humectation bioadhesion of 186.34, 831.5, 2380, and 630.5 gf, tear strength of 2200, 1233, 1562, and 385 gf, erythema of 358, 8.4, 227, and 188; transepidermal water loss (TEWL) of 2.6, 4.7, 1.9, and 5.2 g/h·m2; hydration of 76.1, 89.9, 73.5, and 83.5%; pH of 4.85, 5.40, 5.85, and 4.85; and drug release (Peppas kinetics release) of n: 0.53, n: 0.62, n: 0.62, and n: 0.66). In vitro studies were performed on Franz-type diffusion cells and indicated flux of 57.1, 145.4, 718.7, and 2.7 µg/cm2; permeation coefficient (Kp) of 13.2, 19.56, 42, and 0.00015 cm2/h; and time lag (tL) of 6.29, 17.61, 27. 49, and 22.3 h, respectively, in wounded skin. There was no passage of ceftriaxone from dressings and microfibers to healthy skin, but that was not the case for PMVA/100P and Kollicoat® 100P microneedles, which exhibited flux of 194 and 0.4 µg/cm2, Kp of 11.3 and 0.00002 cm2/h, and tL of 5.2 and 9.7 h, respectively. The healing time of the formulations in vivo (tests carried out using diabetic Wistar rats) was under 14 days. In summary, polymeric dressings, microfibers, and microneedles loaded with ceftriaxone were developed. These formulations have the potential to address the challenges associated with chronic wounds, such as diabetic foot, improving the outcomes.

5.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901719

RESUMO

The use of nanoparticles as drug delivery systems has increased in importance in the last decades. Despite the disadvantages of difficulty swallowing, gastric irritation, low solubility, and poor bioavailability, oral administration stands out as the most widely used route for therapeutic treatments, though it may not always be the most effective route. The effect of the first hepatic pass is one of the primary challenges that drugs must overcome to carry out their therapeutic effect. For these reasons, controlled-release systems based on nanoparticles synthesized from biodegradable natural polymers have been reported to be very efficient in enhancing oral delivery in multiple studies. Chitosan has been shown to have an extensive variability of properties and roles in the pharmaceutical and health fields; of its most important properties are the ability to encapsulate and transport drugs within the body and enhance the drug interaction with the target cells, which improves the efficacy of the encapsulated drugs. The physicochemical properties of chitosan give it the ability to form nanoparticles through multiple mechanisms, which will be addressed in this article. The present review article focuses on highlighting the applications of chitosan nanoparticles for oral drug delivery.


Assuntos
Quitosana , Nanopartículas , Portadores de Fármacos/química , Quitosana/química , Sistemas de Liberação de Medicamentos , Administração Oral , Polímeros/química , Nanopartículas/química
6.
J Pharm Pharm Sci ; 25: 93-109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35364004

RESUMO

The transdermal route has been widely studied in the last decade due to its multiple advantages, where one of the most promising transdermal systems are microneedles, these allow the delivery of drugs in a painless way and with easy application, being very attractive for patients with chronic treatments. This review highlights the new research that develops this approach to transdermal therapies, including examples of materials and methods used for their manufacture and presenting an overview of the clinical trials currently available in Cochrane in a demonstrative way to understand the growing popularity of this strategy.


Assuntos
Sistemas de Liberação de Medicamentos , Agulhas , Administração Cutânea , Humanos , Preparações Farmacêuticas
7.
J Pharm Innov ; 17(2): 319-332, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33425065

RESUMO

Purpose: The present review article focuses on highlighting the main technologies used as tools that improve the delivery of transdermal biomolecules, addressing them from the point of view of research in the development of transdermal systems that use physical and chemical permeation enhancers and nanocarrier systems or a combination of them. Results: Transdermal drug delivery systems have increased in importance since the late 1970s when their use was approved by the Food and Drug Administration (FDA). They appeared to be an alternative resource for the administration of many potent drugs. The first transdermal drug delivery system used for biomolecules was for the treatment of hormonal disorders. Biomolecules have been used primarily in many treatments for cancer and diabetes, vaccines, hormonal disorders, and contraception. Conclusions: The latest technologies that have used such transdermal biomolecule transporters include electrical methods (physical penetration enhancers), some chemical penetration enhancers and nanocarriers. All of them allow the maintenance of the physical and chemical properties of the main proteins and peptides through these clinical treatments, allowing their efficient storage, transport, and release and ensuring the achievement of their target and better results in the treatment of many diseases.

8.
Pharmaceutics ; 13(12)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34959305

RESUMO

The methacrylic acid-ethyl acrylate copolymer nanoparticles were prepared using the solvent displacement method. The independent variables were the drug/polymer ratio, surfactant concentration, Polioxyl 40 hydrogenated castor oil, the added water volume, time, and stirring speed, while size, PDI, zeta potential, and encapsulation efficiency were the response variables analyzed. A design of screening experiments was carried out to subsequently perform the optimization of the nanoparticle preparation process. The optimal formulation was characterized through the dependent variables size, PDI, zeta potential, encapsulation efficiency and drug release profiles. In vivo tests were performed in Wistar rats previously induced with diabetes by administration of streptozotocin. Once hyperglycemia was determined in rats, a suspension of nanoparticles loaded with glibenclamide was administered to them while the other group was administered with tablets of glibenclamide. The optimal nanoparticle formulation obtained a size of 18.98 +/- 9.14 nm with a PDI of 0.37085 +/- 0.014 and a zeta potential of -13.7125 +/- 1.82 mV; the encapsulation efficiency was of 44.5%. The in vivo model demonstrated a significant effect (p < 0.05) between the group administered with nanoparticles loaded with glibenclamide and the group administered with tablets compared to the group of untreated individuals.

9.
Iran J Pharm Res ; 19(2): 127-133, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224217

RESUMO

Transdermal patches loaded with pravastatin was previously characterized in another published study by Serrano-Castañeda et al; 2015. These transdermal patches (TP) were generated by the plate casting technique, the in-vitro percutaneous absorption studies of TP were evaluated for three different formulations with different quantities of Pluronic F-127 (PF-127): i) without PF-127 (TP W), ii) 1% of PF-127 (TP 1%), and iii) 3% of PF-127 (TP 3%) using solid microneedles as a penetration enhancer with two different lengths: i) 0.25 mm and ii) 2.25 mm and iii) in-vitro permeation studies by passive diffusion. The fluxes (F), time lag (tLag) and permeability constants (Kp) for each formulation were: TP W (F:38.5µg/cm2*h, tLag:18.97h and Kp:5.9x10-3 cm/h), TP W with microneedles of 0.25 mm (F:103.3 µg/cm2*h, tLag: 20.76 h and Kp: 0.0158 cm/h), TP W and microneedles of 2.25 mm (F:105.2µg/cm2*h, tLag: 21.16 h and Kp: 0.0159cm/h), TP 1% (F:90 µg/cm2*h, tLag: 19.48 h and Kp: 0.0137 cm/h), TP 1% with microneedles of 0.25 mm (F:111.4µg/cm2*h, tLag:19.11h and Kp:0.017cm/h), and TP 1% with microneedles of 2.25 mm (F:115.2µg/cm2*h, tLag:16.73h and Kp:0.017cm/h), TP 3% (F:40.9µg/cm2*h, tLag:20.45h and Kp:0.0062 cm/h), TP 3% with microneedles of 0.25 mm (F:67.1 µg/cm2*h, tLag: 21.79h and Kp:0.0102cm/h) and TP 3% with microneedles of 2.25 (F:70.5 µg/cm2*h, tLag:20.44h and Kp:0.0107cm/h). Results show that the formulation of TP affects the pravastatina flux and Kp parameters, however the length of microneedles only has important effect on tLag.

10.
Iran J Pharm Res ; 19(1): 138-152, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922476

RESUMO

The development of a losartan potassium patch for the treatment of hypertension showed that a combination of hydrophobic and hydrophilic polymers, using as a plasticizer citroflex and succinic acid as a cohesion promoter result in homogeneous films. The effect of the Eudragit® E100, PVP K30, citroflex and succinic acid in the bioadhesion, postwetting bioadhesion, resistance to rupture and drug release, was studied. The succinic acid in synergy with the plasticizer (citroflex) modifies the characteristics of the polymeric matrix of Eudragit® E100, increasing the release and the resistance to rupture of transdermal patches. For the case of the hydrophilic polymer PVP K30, it increases the bioadhesion and drug release by creating porous matrices. From a previous experimental design, the optimal formulation was acquired, and this formulation was physicochemically characterized. A transdermal patch was obtained with the next dimensions and characteristics: 28.46 ± 0.055 mm in diameter and 0.430 ± 0.008 mm in thickness, a bioadhesion of 1063.05 ± 60.33 gf, postwetting bioadhesion 995.9 ± 72.53 gf significantly decreased. The breaking strength was of 1301.5 ± 96.5 gf, surface pH patch of 6, constriction of 0% at 7 days, and 94.0366 ± 1.8617% of losartan content. The 93% of the drug is released at 4 h (n = 6), adjusting to the kinetic model of Higuchi and Peppas. In the in-vitro penetration studies by passive diffusion, a flow (J) of 42.2 µg/cm2h, a permeability constant (kp) of 2.1793E-03 cm/h and a latency time (tL) of 17.20 h and with the use of microneedles a flow (J) of 61.7 µg/cm2h, a permeability constant (kp) of 3.1869E-03 cm/h and a latency time (tL) of 17.74 h were obtained.

11.
J Pharm Pharm Sci ; 21(1): 73-93, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29510800

RESUMO

The microneedles technology has found applications in many health-related fields. For example, their application in drugs and vaccines delivery as well, as the determination of biomarkers, has been reported. They also have a place in the dermatology and cosmetic areas such as the treatment of wounds from burns, scars, acne, depigmentation, and alopecia will be shown. Microneedles are used in therapeutic applications and are manufactured using materials such as metal (steel, titanium, nickel), polymer (oly-glycolic acid (PGA), poly-lactide-co-glycolide acid (PLGA), poly-L-lactic acid (PLA), chitosan), glass, silicon, ceramic, carbohydrates (trehalose, sucrose, mannitol). Examples of application of microneedles and their advantages and disadvantages are discussed. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.


Assuntos
Cosméticos , Sistemas de Liberação de Medicamentos , Agulhas , Preparações Farmacêuticas/metabolismo , Pele/metabolismo , Absorção Fisiológica , Humanos , Preparações Farmacêuticas/química , Pele/química
12.
Rev. cuba. farm ; 49(1)ene.-mar. 2015. ilus, tab
Artigo em Espanhol | LILACS, CUMED | ID: lil-770992

RESUMO

Introducción: el desarrollo de medicamentos transdérmicos manifiesta gran interés en los últimos años debido a las ventajas que ofrece; sin embargo, muchos de los sistemas desarrollados utilizan componentes solubles lo cual podría llevar a una ineficacia terapéutica si la matriz polimérica del sistema se solubiliza muy rápido, por ello se ensayan polímeros insolubles que permitan modular la liberación de un ingrediente farmacéuticamente activo. Objetivo: evaluar la liberación de pravastatina sódica en matrices poliméricas insolubles de quitosan/PF-127 con el método de paleta sobre disco para obtener su perfil cinético de liberación, con la finalidad de proponerse como matrices viables para la elaboración de parches transdérmicos. Métodos: se realizaron estudios de contenido químico, diámetro y espesor de las películas, calorimetrías de barrido diferencial y estudios de liberación. La cuantificación del principio activo se realizó mediante espectrofotometría UV-Vis a 238 nm. Resultados: se obtuvieron parches transdérmicos con buena uniformidad de contenido, espesor, diámetro, con una buena estabilidad en base a los estudios de calorimetría. El uso de PF-127 incrementó o retardó la liberación de pravastatina de la matriz polimérica dependiendo de su concentración y al realizarse los perfiles cinéticos de liberación las formulaciones se ajustaron a una cinética de orden 0 que describe el comportamiento de algunos sistemas transdérmicos. Conclusiones: los resultados manifiestan la posibilidad de usar esta matriz polimérica insoluble de quitosana con PF-127 para modular la liberación de pravastatina sódica y de fármacos con estructura similar a la misma por vía transdérmica, lo que generará de esta manera nuevas alternativas a las formas farmacéuticas orales para el tratamiento de padecimientos y enfermedades(AU)


Introduction: the development of transdermal drugs has aroused great interest in recent years due to their advantages, however many of the drug delivery systems use soluble matrix components which could trigger therapeutic problems due to a rapid release of the active ingredient. Therefore, insoluble polymers are being tested that can modulate the release of a pharmaceutically active ingredient. Objective: to evaluate the release of pravastatin sodium in insoluble polymer chitosan/PF-127 matrices by VER to obtain kinetic profile of release in order to submit them as viable systems for the manufacture of transdermal patches. Methods: studies on the chemical content, diameter and thickness of films, differential scanning calorimetry and release studies were performed. The UV-Vis spectrophotometry at 238 nm allowed quantitating the active principle. Results: transdermal patches with adequate uniform drug content, suitable thickness and diameter with good stability, based on calorimetric studies, were obtained. The use of PF-127 increased or delayed the release of pravastatin sodium from the polymeric matrix depending on concentration. When performing the kinetic profiles of release, the formulations were regulated to zero kinetic that describes the behavior of some transdernal systems. Conclusions: the results demonstrated the possibility of using these insoluble polymer chitosan/PF-127 matrices to modulate the release of pravastin sodium and of other structurally similar drugs, thus creating new alternatives to existing pharmaceutical oral forms for treatment of diseases(AU)


Assuntos
Humanos , Masculino , Feminino , Pravastatina/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Quitosana , Quitosana/uso terapêutico , Adesivo Transdérmico , Varredura Diferencial de Calorimetria/métodos , México
13.
Rev. cuba. farm ; 47(3)jul.-sep. 2013.
Artigo em Espanhol | LILACS, CUMED | ID: lil-691238

RESUMO

Introducción: la principal barrera de permeación que tenemos es la piel. A pesar de ser una barrera casi impermeable para la mayoría de sustancias, se han buscado maneras para mejorar su permeabilidad utilizando nuevas tecnologías como es el uso de microagujas o promotores químicos como el Transcutol®. Objetivo: desarrollar y caracterizar un parche transdérmico a base de clorhidrato de sibutramina como fármaco modelo, usando Transcutol® y microagujas como agentes promotores de la penetración transdérmica. Métodos: se realizó la caracterización fisicoquímica de los parches mediante estudios de microscopia con luz polarizada, estudios de bioadhesión y resistencia a la ruptura. Los estudios de difusión se efectuaron en celdas de difusión verticales tipo Franz, utilizando piel abdominal humana como membrana entre ambos compartimentos. La cuantificación del principio activo se realizó mediante electroforesis capilar. Resultados: se obtuvieron parches bioadhesivos, con una adecuada estabilidad del activo en la matriz polimérica de quitosán al no precipitarse. El uso de Transcutol® y microagujas incrementó el paso de clorhidrato de sibutramina a través de piel humana con respecto al parche control. Se obtuvieron valores de flujo de 0,0649 mg.cm-2.h-1 y 0,0816 mg.cm-2.h-1 en el parche con agente promotor y microagujas de 1 y 2 mm respectivamente, en comparación con los valores de flujo de 0,0527 mg.cm-2.h-1 y 0,0554 mg.cm-2.h-1 para el parche sin agente promotor (control) utilizando microagujas de 1 y 2 mm respectivamente. Conclusiones: los resultados ponen de manifiesto la posibilidad de usar Transcutol® y microagujas para incrementar el paso de fármacos potentes y con estructura similar a la sibutramina por vía transdérmica, lo que genera de esta manera nuevas alternativas a las formas farmacéuticas orales para el tratamiento de padecimientos y enfermedades(AU)


Introduction: the main permeation barrier is the skin. Although it is almost an impermeable barrier to most substances, new ways have been examined to improve its permeability by using new technologies such as microneedles and chemical enhancers like Transcutol®. Objective: to develop and to characterize a transdermal patch containing sibutramine hydrochloride as model drug and using microneedles and Transcutol® as transdermal drug delivery enhancers. Methods: Physicochemical characterization of sibutramine hydrochloride patches using polarized light microscopy, bioadhesion, tensile strength studies. The diffusion studies were performed in Franz-type diffusion cells with human abdominal skin as a sort of membrane between both compartments. The active ingredient was quantified through capillary electrophoresis. Results: bioadhesive patches were obtained, with adequate stability of sibutramine hydrochloride in the polymer matrix of chitosan. The use of microneedles and Transcutol® increased sibutramine hydrochloride delivery through the human skin when compared with the control patch. The flow rates were 0.0649 mg.cm-2.h-1 and 0,0816 mg.cm-2.h-1 in the enhanced patch by using 1 and 2 mm microneedles respectively, in comparison with flow rates of 0,0527 mg.cm-2.h-1 and 0.0554 mg.cm-2.h-1 for the control patch having no enhancing agent with 1 and 2 mm microneedles respectively. Conclusions: the results show that it is possible to use Transcutol® and microneedles to increase the delivery of potent drugs having a structure similar to that of sibutramine through transdermal administration. All this generates new alternatives to oral pharmaceuticals in order to treat ailments and diseases(AU)


Assuntos
Administração Cutânea , Medicamentos de Referência , Adesivo Transdérmico , Agulhas , Microscopia de Polarização/métodos
14.
Drug Des Devel Ther ; 5: 211-24, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21607018

RESUMO

Cigarette smoking is the primary cause of lung cancer, cardiovascular diseases, reproductive disorders, and delayed wound healing all over the world. The goals of smoking cessation are both to reduce health risks and to improve quality of life. The development of novel and more effective medications for smoking cessation is crucial in the treatment of nicotine dependence. Currently, first-line smoking cessation therapies include nicotine replacement products and bupropion. The partial nicotinic receptor agonist, varenicline, has recently been approved by the US Food and Drug Administration (FDA) for smoking cessation. Clonidine and nortriptyline have demonstrated some efficacy, but side effects may limit their use to second-line treatment products. Other therapeutic drugs that are under development include rimonabant, mecamylamine, monoamine oxidase inhibitors, and dopamine D3 receptor antagonists. Nicotine vaccines are among newer products seeking approval from the FDA. Antidrug vaccines are irreversible, provide protection over years and need booster injections far beyond the critical phase of acute withdrawal symptoms. Interacting with the drug in the blood rather than with a receptor in the brain, the vaccines are free of side effects due to central interaction. For drugs like nicotine, which interacts with different types of receptors in many organs, this is a further advantage. Three anti-nicotine vaccines are today in an advanced stage of clinical evaluation. Results show that the efficiency of the vaccines is directly related to the antibody levels, a fact which will help to optimize the vaccine effect. The vaccines are expected to appear on the market between 2011 and 2012.


Assuntos
Nicotina/imunologia , Tabagismo/terapia , Vacinas/uso terapêutico , Animais , Humanos , Nicotina/agonistas , Nicotina/antagonistas & inibidores , Nicotina/farmacologia , Abandono do Hábito de Fumar/métodos , Tabagismo/imunologia , Vacinas/imunologia
15.
Eur J Pharm Biopharm ; 79(1): 102-7, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21295142

RESUMO

This work focuses on the preparation and characterization of nanoparticles containing triclosan. Additionally, in vitro percutaneous permeation of triclosan through pig ear skin was performed, and comparisons were made with two commercial formulations: An o/w emulsion and a solution, intended for the treatment of acne. The nanoparticle suspensions were prepared by the emulsification-diffusion by solvent displacement method, using Eudragit® E 100 as polymer. All batches showed a size smaller than 300 nm and a positive Zeta potential, high enough (20-40 mV) to ensure a good physical stability. Differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) studies suggested that triclosan was molecularly dispersed in the nanoparticle batches containing up to 31% of triclosan, with good encapsulation efficiency (95.9%). The results of the in vitro permeation studies showed the following order for the permeability coefficients: Solution>cream≈nanoparticles; while for the amount retained in the skin, the order was as follows: cream>nanoparticles≈solution. Nanoparticles, being free of surfactants or other potentially irritant agents, can be a good option for the delivery of triclosan to the skin, representing a good alternative for the treatment of acne.


Assuntos
Acne Vulgar/tratamento farmacológico , Anti-Infecciosos Locais/química , Nanopartículas/química , Triclosan/química , Acne Vulgar/patologia , Animais , Anti-Infecciosos Locais/administração & dosagem , Anti-Infecciosos Locais/farmacocinética , Anti-Infecciosos Locais/uso terapêutico , Difusão , Portadores de Fármacos/química , Composição de Medicamentos , Orelha/fisiologia , Emulsificantes/química , Emulsões , Nanopartículas/administração & dosagem , Nanopartículas/uso terapêutico , Tamanho da Partícula , Polímeros/química , Pele/metabolismo , Solventes , Propriedades de Superfície , Suínos , Triclosan/administração & dosagem , Triclosan/farmacocinética , Triclosan/uso terapêutico
16.
J Clin Pharmacol ; 51(7): 964-77, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21148047

RESUMO

Transdermal drug delivery offers an attractive alternative to the conventional drug delivery methods of oral administration and injection. However, the stratum corneum acts as a barrier that limits the penetration of substances through the skin. Recently, the use of micron-scale needles in increasing skin permeability has been proposed and shown to dramatically increase transdermal delivery. Microneedles have been fabricated with a range of sizes, shapes, and materials. Most in vitro drug delivery studies have shown these needles to increase skin permeability to a broad range of drugs that differ in molecular size and weight. In vivo studies have demonstrated satisfactory release of oligonucleotides and insulin and the induction of immune responses from protein and DNA vaccines. Microneedles inserted into the skin of human subjects were reported to be painless. For all these reasons, microneedles are a promising technology to deliver drugs into the skin. This review presents the main findings concerning the use of microneedles in transdermal drug delivery. It also covers types of microneedles, their advantages and disadvantages, enhancement mechanisms, and trends in transdermal drug delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Microtecnologia , Agulhas , Preparações Farmacêuticas/administração & dosagem , Pele/metabolismo , Administração Cutânea , Animais , Desenho de Equipamento , Terapia Genética/métodos , Humanos , Agulhas/efeitos adversos , Permeabilidade , Farmacocinética , Pele/anatomia & histologia , Pele/efeitos dos fármacos , Fenômenos Fisiológicos da Pele , Vacinação/métodos
17.
Pharm Dev Technol ; 16(2): 162-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20141498

RESUMO

OBJECTIVE: The aim of this study was to prepare and characterize both physically and biopharmaceutically, a nortriptyline hydrochloride (NTP-HCl) patch formulated in chitosan. METHODS: 16 g of each chitosan patch formulation (I, II and III, see Table 1 ) was poured onto rectangular glass plates (64 cm²) at a height of 1 mm and dried for 24 h at room temperature. In order to characterize the chitosan patches, polarized microscopy, in vitro skin permeation studies by passive diffusion and iontophoresis and rheological and bioadhesion studies were performed. RESULTS: Polarized microscopy revealed the absence of aggregates and crystal forms of NTP-HCl in all transdermal patches after 30 days of storage. The rheological behavior of Patches I, II and III was predominantly elastic. The low level of adhesion of Patch III (containing PF-127 + 1-dodecanol) could be a result of the interactions between chitosan and PF-127 in the presence of 1-dodecanol. Patches I and II had approximately the same value of adhesion (≈ 60 mN.mm). The transdermal patch with chitosan, PF-127 and 1-dodecanol (Patch III) provided a reasonable flux of NTP-HCl across the skin compared with Patches I and II. Iontophoresis applied to the patches did not increase the penetration of NTP-HCl across the skin. CONCLUSIONS: The data suggest that Patch III is suitable for use in clinical practice pending further studies.


Assuntos
Inibidores da Captação Adrenérgica/administração & dosagem , Antidepressivos Tricíclicos/administração & dosagem , Quitosana/química , Nortriptilina/administração & dosagem , Abandono do Hábito de Fumar/métodos , Adesivo Transdérmico , Adulto , Feminino , Humanos , Iontoforese , Pessoa de Meia-Idade , Pele/metabolismo
18.
Int J Nanomedicine ; 5: 611-20, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20856836

RESUMO

Solid lipid nanoparticles (SLNs) have been used for carrying different therapeutic agents because they improve absorption and bioavailability. The aim of the study was to prepare lipidic nanoparticles containing cyclosporine (CyA) by the emulsification-diffusion method and to study their physicochemical stability. Glyceryl behenate (Compritol(®) ATO 888) and lauroyl macrogolglycerides (Gelucire(®) 44/14) were used as carrier materials. Nanoparticles with good stability were obtained with Gelucire(®), while it was difficult to obtain stable systems with Compritol(®). Systems with Gelucire(®) were characterized by particle size, Z-potential, differential scanning calorimetry (DSC), scanning electron microscopy (SEM), entrapment efficiency and in vitro release. Particle size and Z-potential were evaluated for at least three months. With a high CyA content (≥60 mg) in Gelucire(®) SLNs, variations in size were greater and particle size also increased over time in all batches; this effect may have been caused by a probable expulsion of the drug due to the lipid's partial rearrangement. While the Z-potential decreased 10 mV after three months, this effect may be explained by the superficial properties of the drug that make the molecules to be preferably oriented at the solid-liquid interface, causing a change in the net charge of the particle. SEM confirmed size and shape of the nanoparticles. DSC studies evidenced that CyA affects the lipid structure by a mechanism still unknown. The entrapment efficiency was higher than 92%, and CyA release from SLNs was relatively fast (99.60% in 45 min).


Assuntos
Ciclosporina/administração & dosagem , Lipídeos/química , Nanopartículas/química , Química Farmacêutica , Difusão , Portadores de Fármacos/química , Estabilidade de Medicamentos , Emulsificantes , Ácidos Graxos , Técnicas In Vitro , Microscopia Eletrônica de Varredura , Nanomedicina , Nanopartículas/ultraestrutura , Tamanho da Partícula , Polietilenoglicóis , Termodinâmica
19.
Drug Dev Ind Pharm ; 35(12): 1511-21, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19929211

RESUMO

BACKGROUND: Mycetoma is a chronic, degenerative, and incapacitating infection of the skin and subcutaneous tissue. AIM: This study focuses on developing a kanamycin-based auxiliary system intended to be used in the treatment of mycetoma caused by Actinomadura madurae. METHODS: Transdermal patches (with two different formulations: one with free kanamycin [K] and the other one with kanamycin adsorbed in silica [K-SG]) and an emulgel were developed. Both patches were prepared by the casting-evaporation technique. To characterize them, differential scanning calorimetry, bioadhesion, post-moisture detachment, strength and rupture distance, gas exchange, water uptake, and dissolution studies were carried out. The emulgel (containing 0.57% of kanamycin) was prepared from an oil-in-water emulsion, which was then incorporated to a gel. RESULTS: the patches with the best characteristics contained 22.9% of silica and 14.6% of kanamycin. Dissolution studies indicated that 8.8% of kanamycin released from K and 3.2% from K-SG at 24h. The emulgel containing 0.57% of kanamycin showed good technological characteristics for its application to the skin (viscosity, 44.9 +/- 1.4 poises; pH, 6.9 +/- 0.4; and penetrability, 52.7 +/- 5.1). CONCLUSIONS: The optimal patches were those containing 15.9% of freely dispersed kanamycin (K) and 14.6% of kanamycin adsorbed in silica (K-SG), which corresponds to the batch 2-0.8. The assessments performed to both pharmaceutical forms (patches and emulgel) show that they have the adequate technological characteristics for being used as an auxiliary in the treatment of actinomycetoma caused by A. madurae.


Assuntos
Canamicina/administração & dosagem , Micetoma/tratamento farmacológico , Actinomycetales/efeitos dos fármacos , Administração Cutânea , Varredura Diferencial de Calorimetria , Fenômenos Químicos , Química Farmacêutica , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Formas de Dosagem , Feminino , Gases/química , Humanos , Concentração de Íons de Hidrogênio , Canamicina/química , Canamicina/farmacocinética , Fenômenos Mecânicos , Micetoma/microbiologia , Sílica Gel , Dióxido de Silício/química , Pele/metabolismo , Temperatura , Água/análise , Adulto Jovem
20.
J Clin Pharmacol ; 49(11): 1262-83, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19717723

RESUMO

Transdermal drug delivery offers an attractive alternative to the conventional drug delivery methods of oral administration and injection. However, the stratum corneum acts as a barrier that limits the penetration of substances through the skin. Application of high-voltage pulses to the skin increases its permeability (electroporation) and enables the delivery of various substances into and through the skin. The application of electroporation to the skin has been shown to increase transdermal drug delivery. Moreover, electroporation, used alone or in combination with other enhancement methods, expands the range of drugs (small to macromolecules, lipophilic or hydrophilic, charged or neutral molecules) that can be delivered transdermally. The efficacy of transport depends on the electrical parameters and the physicochemical properties of drugs. The in vivo application of high-voltage pulses is well tolerated, but muscle contractions are usually induced. The electrode and patch design is an important issue to reduce the discomfort of the electrical treatment in humans. This review presents the main findings in the field of electroporation-namely, transdermal drug delivery. Particular attention is paid to proposed enhancement mechanisms and trends in the field of topical and transdermal delivery.


Assuntos
Administração Cutânea , Sistemas de Liberação de Medicamentos/métodos , Eletroporação/métodos , Pele/metabolismo , Antagonistas Adrenérgicos beta/administração & dosagem , Analgésicos/administração & dosagem , Animais , Anti-Inflamatórios/administração & dosagem , Antidiuréticos/administração & dosagem , Antineoplásicos/administração & dosagem , Antivirais/administração & dosagem , Catequina/administração & dosagem , Catequina/análogos & derivados , Estimulantes do Sistema Nervoso Central/administração & dosagem , Dextranos/administração & dosagem , Antagonistas do Ácido Fólico/administração & dosagem , Técnicas de Transferência de Genes , Hormônios/administração & dosagem , Humanos , Insulina/administração & dosagem , Modelos Biológicos , Oligonucleotídeos/administração & dosagem , Fármacos Fotossensibilizantes/administração & dosagem , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...