Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(4): 109580, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38600973

RESUMO

Centriolar satellites are high-order assemblies, scaffolded by the protein PCM1, that gravitate as particles around the centrosome and play pivotal roles in fundamental cellular processes notably ciliogenesis and autophagy. Despite stringent control mechanisms involving phosphorylation and ubiquitination, the landscape of post-translational modifications shaping these structures remains elusive. Here, we report that necrosulfonamide (NSA), a small molecule known for binding and inactivating the pivotal effector of cell death by necroptosis MLKL, intersects with centriolar satellites, ciliogenesis, and autophagy independently of MLKL. NSA functions as a potent redox cycler and triggers the oxidation and aggregation of PCM1 alongside select partners, while minimally impacting the overall distribution of centriolar satellites. Additionally, NSA-mediated ROS production disrupts ciliogenesis and leads to the accumulation of autophagy markers, partially alleviated by PCM1 deletion. Together, these results identify PCM1 as a redox sensor protein and provide new insights into the interplay between centriolar satellites and autophagy.

2.
Dev Cell ; 58(22): 2477-2494.e8, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37875118

RESUMO

Cilia protrude from the cell surface and play critical roles in intracellular signaling, environmental sensing, and development. Reduced actin-dependent contractility and intracellular trafficking are both required for ciliogenesis, but little is known about how these processes are coordinated. Here, we identified a Rac1- and Rab35-binding protein with a truncated BAR (Bin/amphiphysin/Rvs) domain that we named MiniBAR (also known as KIAA0355/GARRE1), which plays a key role in ciliogenesis. MiniBAR colocalizes with Rac1 and Rab35 at the plasma membrane and on intracellular vesicles trafficking to the ciliary base and exhibits fast pulses at the ciliary membrane. MiniBAR depletion leads to short cilia, resulting from abnormal Rac-GTP/Rho-GTP levels and increased acto-myosin-II-dependent contractility together with defective trafficking of IFT88 and ARL13B into cilia. MiniBAR-depleted zebrafish embryos display dysfunctional short cilia and hallmarks of ciliopathies, including left-right asymmetry defects. Thus, MiniBAR is a dual Rac and Rab effector that controls both actin cytoskeleton and membrane trafficking for ciliogenesis.


Assuntos
Proteínas do Citoesqueleto , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Proteínas do Citoesqueleto/metabolismo , Transdução de Sinais , Proteínas de Transporte/metabolismo , Cílios/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
3.
Light Sci Appl ; 12(1): 29, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36702815

RESUMO

Mapping red blood cells (RBCs) flow and oxygenation is of key importance for analyzing brain and tissue physiology. Current microscopy methods are limited either in sensitivity or in spatio-temporal resolution. In this work, we introduce a novel approach based on label-free third-order sum-frequency generation (TSFG) and third-harmonic generation (THG) contrasts. First, we propose a novel experimental scheme for color TSFG microscopy, which provides simultaneous measurements at several wavelengths encompassing the Soret absorption band of hemoglobin. We show that there is a strong three-photon (3P) resonance related to the Soret band of hemoglobin in THG and TSFG signals from zebrafish and human RBCs, and that this resonance is sensitive to RBC oxygenation state. We demonstrate that our color TSFG implementation enables specific detection of flowing RBCs in zebrafish embryos and is sensitive to RBC oxygenation dynamics with single-cell resolution and microsecond pixel times. Moreover, it can be implemented on a 3P microscope and provides label-free RBC-specific contrast at depths exceeding 600 µm in live adult zebrafish brain. Our results establish a new multiphoton contrast extending the palette of deep-tissue microscopy.

4.
Dev Cell ; 57(12): 1529-1544.e5, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35613615

RESUMO

Morphogenesis, wound healing, and some cancer metastases depend upon the migration of cell collectives that need to be guided to their destination as well as coordinated with other cell movements. During zebrafish gastrulation, the extension of the embryonic axis is led by the mesendodermal polster that migrates toward the animal pole, followed by the axial mesoderm that undergoes convergence and extension. Here, we investigate how polster cells are guided toward the animal pole. Using a combination of precise laser ablations, advanced transplants, and functional as well as in silico approaches, we establish that each polster cell is oriented by its immediate follower cells. Each cell perceives the migration of followers, through E-cadherin/α-catenin mechanotransduction, and aligns with them. Therefore, directional information propagates from cell to cell over the whole tissue. Such guidance of migrating cells by followers ensures long-range coordination of movements and developmental robustness.


Assuntos
Mecanotransdução Celular , Peixe-Zebra , Animais , Movimento Celular/fisiologia , Mesoderma , alfa Catenina
5.
J Vis Exp ; (173)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34338678

RESUMO

Morphogenesis involves many cell movements to organize cells into tissues and organs. For proper development, all these movements need to be tightly coordinated, and accumulating evidence suggests this is achieved, at least in part, through mechanical interactions. Testing this in the embryo requires direct physical perturbations. Laser ablations are an increasingly used option that allows relieving mechanical constraints or physically isolating two cell populations from each other. However, many ablations are performed with an ultraviolet (UV) laser, which offers limited axial resolution and tissue penetration. A method is described here to ablate deep, significant, and spatially well-defined volumes using a two-photon microscope. Ablations are demonstrated in a transgenic zebrafish line expressing the green fluorescent protein in the axial mesendoderm and used to sever the axial mesendoderm without affecting the overlying ectoderm or the underlying yolk cell. Cell behavior is monitored by live imaging before and after the ablation. The ablation protocol can be used at different developmental stages, on any cell type or tissue, at scales ranging from a few microns to more than a hundred microns.


Assuntos
Gástrula , Peixe-Zebra , Animais , Ectoderma , Morfogênese , Fótons
6.
Nat Commun ; 9(1): 5082, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30504829

RESUMO

A complex interplay of intrinsic factors and extrinsic signalling pathways controls both cell lineage commitment and maintenance of cell identity. Loss of defined cellular states is the cause of many different cancers, including pancreatic cancer. Recent findings suggest a clinical role for the conserved SLIT/ROBO signalling pathway in pancreatic cancer. However, whilst this pathway has been extensively studied in many processes, a role for Slit and Robo genes in pancreas cell identity and plasticity has not been established yet. Here, we identify Slit/Robo signalling as a key regulator of pancreatic progenitor identity. We find that Robo1 and Robo2 are required for preserving pancreatic cell identity shortly after fate induction and, subsequently, for expansion of the pancreatic progenitor pool in the mouse. Furthermore, we show that Robo receptors control the expression of Tead transcription factors as well as its downstream transcriptional activity. Our work identifies an interplay between Slit/Robo pathway and Tead intrinsic regulators, functioning as gatekeeper of pancreatic cell identity.


Assuntos
Pâncreas/citologia , Pâncreas/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dineínas/genética , Dineínas/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Rare Dis ; 4(1): e1195050, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27500073

RESUMO

The DiGeorge/22q11-deletion syndrome (22q11DS), also known as velocardiofacial syndrome, is a congenital disease causing numerous structural and behavioral disorders, including cardiac outflow tract anomalies, craniofacial dysmorphogenesis, parathyroid and thymus hypoplasia, and mental disorders. It results from a unique chromosomal microdeletion on the 22q11.2 region in which the transcriptional activator TBX1 is decisive for the occurrence of the disease. During embryogenesis, Tbx1 is required for patterning of pharyngeal region giving rise to structures of the face, neck and chest. Genetic and developmental studies demonstrated that the severity and variability of the syndrome are determined by Tbx1 targets involved in pharyngeal neural crest cell migration and survival. Recently, we demonstrated that the chemokine Sdf1/Cxcl12 and its receptor Cxcr4 are genetically downstream of Tbx1 during pharyngeal development and that reduction of CXCR4 signaling results in defects which recapitulate the major morphological anomalies of 22q11DS, supporting the possibility of a pivotal role for the SDF1/CXCR4 axis in its etiology.

8.
Development ; 143(4): 582-8, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26755698

RESUMO

DiGeorge syndrome (DGS) is a congenital disease causing cardiac outflow tract anomalies, craniofacial dysmorphogenesis, thymus hypoplasia, and mental disorders. It results from defective development of neural crest cells (NCs) that colonize the pharyngeal arches and contribute to lower jaw, neck and heart tissues. Although TBX1 has been identified as the main gene accounting for the defects observed in human patients and mouse models, the molecular mechanisms underlying DGS etiology are poorly identified. The recent demonstrations that the SDF1/CXCR4 axis is implicated in NC chemotactic guidance and impaired in cortical interneurons of mouse DGS models prompted us to search for genetic interactions between Tbx1, Sdf1 (Cxcl12) and Cxcr4 in pharyngeal NCs and to investigate the effect of altering CXCR4 signaling on the ontogeny of their derivatives, which are affected in DGS. Here, we provide evidence that Cxcr4 and Sdf1 are genetically downstream of Tbx1 during pharyngeal NC development and that reduction of CXCR4 signaling causes misrouting of pharyngeal NCs in chick and dramatic morphological alterations in the mandibular skeleton, thymus and cranial sensory ganglia. Our results therefore support the possibility of a pivotal role for the SDF1/CXCR4 axis in DGS etiology.


Assuntos
Região Branquial/patologia , Síndrome de DiGeorge/metabolismo , Crista Neural/metabolismo , Receptores CXCR4/metabolismo , Animais , Movimento Celular , Quimiocina CXCL12/metabolismo , Anormalidades Craniofaciais/patologia , Síndrome de DiGeorge/patologia , Camundongos Mutantes , Neurônios/patologia , Transdução de Sinais , Proteínas com Domínio T/metabolismo
9.
Circ Res ; 113(5): 505-16, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23838132

RESUMO

RATIONALE: Cardiac neural crest cells (NCs) contribute to heart morphogenesis by giving rise to a variety of cell types from mesenchyme of the outflow tract, ventricular septum, and semilunar valves to neurons of the cardiac ganglia and smooth muscles of the great arteries. Failure in cardiac NC development results in outflow and ventricular septation defects commonly observed in congenital heart diseases. Cardiac NCs derive from the vagal neural tube, which also gives rise to enteric NCs that colonize the gut; however, so far, molecular mechanisms segregating these 2 populations and driving cardiac NC migration toward the heart have remained elusive. OBJECTIVE: Stromal-derived factor-1 (SDF1) is a chemokine that mediates oriented migration of multiple embryonic cells and mice deficient for Sdf1 or its receptors, Cxcr4 and Cxcr7, exhibit ventricular septum defects, raising the possibility that SDF1 might selectively drive cardiac NC migration toward the heart via a chemotactic mechanism. METHODS AND RESULTS: We show in the chick embryo that Sdf1 expression is tightly coordinated with the progression of cardiac NCs expressing Cxcr4. Cxcr4 loss-of-function causes delayed migration and enhanced death of cardiac NCs, whereas Sdf1 misexpression results in their diversion from their normal pathway, indicating that SDF1 acts as a chemoattractant for cardiac NCs. These alterations of SDF1 signaling result in severe cardiovascular defects. CONCLUSIONS: These data identify Sdf1 and its receptor Cxcr4 as candidate genes responsible for cardiac congenital pathologies in human.


Assuntos
Quimiocina CXCL12/fisiologia , Comunicação Interventricular/fisiopatologia , Crista Neural/patologia , Receptores CXCR4/fisiologia , Animais , Animais Geneticamente Modificados , Movimento Celular , Quimiocina CXCL12/biossíntese , Quimiocina CXCL12/deficiência , Quimiocina CXCL12/genética , Quimiotaxia , Embrião de Galinha , Quimera , Coturnix/embriologia , Ectoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Comunicação Interventricular/genética , MicroRNAs/genética , Tubo Neural/citologia , Tubo Neural/transplante , Especificidade de Órgãos , Organogênese , Receptores CXCR/biossíntese , Receptores CXCR/genética , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/biossíntese , Receptores CXCR4/deficiência , Receptores CXCR4/genética , Transdução de Sinais , Especificidade da Espécie , Transfecção
10.
J Anat ; 217(6): 651-64, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20840354

RESUMO

Within the embryonic lung, intrinsic nerve ganglia, which innervate airway smooth muscle, are required for normal lung development and function. We studied the development of neural crest-derived intrinsic neurons within the embryonic mouse lung by crossing Wnt1-Cre mice with R26R-EYFP reporter mice to generate double transgenic mice that express yellow fluorescent protein (YFP) in all neural crest cells (NCCs) and their derivatives. In addition to utilizing conventional immunohistochemistry on frozen lung sections, the complex organization of lung innervation was visualized in three dimensions by combining the genetic labelling of NCCs with optical projection tomography, a novel imaging technique that is particularly useful for the 3D examination of developing organs within embryos. YFP-positive NCCs migrated into the mouse lung from the oesophagus region at embryonic day 10.5. These cells subsequently accumulated around the bronchi and epithelial tubules of the lung and, as shown by 3D lung reconstructions with optical projection tomography imaging, formed an extensive, branching network in association with the developing airways. YFP-positive cells also colonized lung maintained in organotypic culture, and responded in a chemoattractive manner to the proto-oncogene, rearranged during transfection (RET) ligand, glial-cell-line-derived neurotrophic factor (GDNF), suggesting that the RET signalling pathway is involved in neuronal development within the lung. However, when the lungs of Ret(-/-) and Gfrα1(-/-) embryos, deficient in the RET receptor and GDNF family receptor α 1 (GFRα1) co-receptor respectively, were examined, no major differences in the extent of lung innervation were observed. Our findings demonstrate that intrinsic neurons of the mouse lung are derived from NCCs and that, although implicated in the development of these cells, the role of the RET signalling pathway requires further investigation.


Assuntos
Sistema Nervoso Entérico/embriologia , Pulmão/embriologia , Pulmão/inervação , Crista Neural/citologia , Animais , Diferenciação Celular , Células Cultivadas , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Imuno-Histoquímica , Pulmão/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas/análise , Tomografia Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...