Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Clin. transl. oncol. (Print) ; 23(8): 1511-1519, ago. 2021.
Artigo em Inglês | IBECS | ID: ibc-222149

RESUMO

Discovery and clinical development of monoclonal antibodies with the ability to interfere in the regulation of the immune response have significantly changed the landscape of oncology in recent years. Among the active agents licensed by the regulatory agencies, nivolumab and pembrolizumab are paradigmatic as the most relevant ones according to the magnitude of available data derived from the extensive preclinical and clinical experience. Although in both cases the respective data sheets indicate well-defined dosage regimens, a review of the literature permits to verify the existence of many issues still unresolved about dosing the two agents, so it must be considered an open question of potentially important consequences, in which to work to improve the effectiveness and efficiency of use (AU)


Assuntos
Humanos , Anticorpos Monoclonais Humanizados/administração & dosagem , Antineoplásicos Imunológicos/administração & dosagem , Neoplasias/tratamento farmacológico , Nivolumabe/administração & dosagem , Anticorpos Monoclonais Humanizados/farmacocinética , Antineoplásicos/farmacocinética , Antineoplásicos Imunológicos/farmacocinética , Nivolumabe/farmacocinética
2.
Clin Transl Oncol ; 23(8): 1511-1519, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33583005

RESUMO

Discovery and clinical development of monoclonal antibodies with the ability to interfere in the regulation of the immune response have significantly changed the landscape of oncology in recent years. Among the active agents licensed by the regulatory agencies, nivolumab and pembrolizumab are paradigmatic as the most relevant ones according to the magnitude of available data derived from the extensive preclinical and clinical experience. Although in both cases the respective data sheets indicate well-defined dosage regimens, a review of the literature permits to verify the existence of many issues still unresolved about dosing the two agents, so it must be considered an open question of potentially important consequences, in which to work to improve the effectiveness and efficiency of use.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Antineoplásicos Imunológicos/administração & dosagem , Inibidores de Checkpoint Imunológico/administração & dosagem , Neoplasias/tratamento farmacológico , Nivolumabe/administração & dosagem , Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos Imunológicos/farmacocinética , Antineoplásicos Imunológicos/uso terapêutico , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia Adotiva/métodos , Nivolumabe/farmacocinética , Nivolumabe/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores
3.
Farm Hosp ; 38(3): 154-61, 2014 May 01.
Artigo em Espanhol | MEDLINE | ID: mdl-24951900

RESUMO

OBJECTIVE: To evaluate the in vitro physicochemical stability of oxaliplatin and doxorubicin when the in vivo hyperthermic intraperitoneal conditions are reproduced. METHODS: Three solutions were prepared, A (oxaliplatin 200 mg/L), B(doxorubicin 15 mg/L) and C (oxaliplatin 200 mg/L with doxorubicin 15mg/L) in glucose 5%. The three solutions were subjected to the maximum temperature reached in vivo (49° C) for two hours. Physical stability was focused on visual control of particles or precipitates in solutions, discharge of gases, odor and color. Samples were taken every 15 minutes and the chemical stability was evaluated by determining the concentration of oxaliplatin and doxorubicin remaining in the samples. Oxaliplatin concentrations were determined by atomic absorption graphite chamber while doxorubicin was determined by high performance liquid chromatography.The chemical stability criteria selected was the one described by the American Pharmacopoeia, which sets a permissible variation range between the 90-110% of the initial concentration. RESULTS: During the assay there was no appearance of particles, precipitates in the samples, discharge of gases, nor colour changes in the solutions. The samples showed a remaining concentration of oxaliplatin and doxorubicin within the 90-110% limit. The stability of the samples that follow to two cycles of freeze-thaw after hyperthermia was also found within the specified limits. CONCLUSION: A, B and c solutions in 5% glucose, are physically and chemically stable at 49° C for two hours. Under these conditions, these solutions could be used with guarantees of stability in patients with peritoneal carcinomatosis subsidiary of intraperitoneal hyperthermic chemotherapy based in these antineoplastic agents.


Objetivo: Determinar in vitro la estabilidad físico-química de oxaliplatino ydoxorrubicina en las condiciones de hipertermia utilizadas in vivo duranteel tratamiento de pacientes con carcinomatosis peritoneal, tras cirugía citorreductora.Métodos: Se prepararon tres disoluciones: A (oxaliplatino 200 mg/L), B(doxorrubicina 15 mg/L) y C (oxaliplatino 200 mg/L + doxorrubicina 15 mg/L)en glucosa al 5%. Las tres disoluciones se sometieron a la temperaturamáxima alcanzada in vivo (49º C) durante dos horas. La estabilidad física secentró en el control visual de partículas y/o precipitados en las disoluciones,el desprendimiento de gases, olor y color. Para controlar la estabilidad química,se extrajeron muestras cada 15 minutos desde el inicio del estudio yse determinó la concentración remanente de oxaliplatino y doxorrubicina enlas mismas. Las concentraciones de oxaliplatino se determinaron por absorciónatómica con cámara de grafito mientras que doxorrubicina se determinómediante cromatografía líquida de alta resolución. Como criterio deestabilidad química se seleccionó el establecido en la Farmacopea Americanaque establece un margen de variación permitido entre el 90-110% de laconcentración inicial.Resultados: Durante el tiempo de ensayo, no se observó la aparición departículas o precipitados, ni el desprendimiento de gases o cambios decolor en las disoluciones. Las muestras analizadas presentaron una concentraciónremanente de oxaliplatino y doxorrubicina dentro del límite de 90-110%. La estabilidad de las muestras sometidas a dos ciclos de congelación-descongelación tras la hipertermia también se encontró dentro de loslímites especificados.Conclusiones: Las disoluciones A, B y C en glucosa al 5%, son establesfísica y químicamente a 49º C, durante dos horas. En estas condiciones,podrían ser utilizadas con garantías de estabilidad en pacientes con carcinomatosisperitoneal subsidiarios de recibir quimioterapia intraperitonealcon hipertermia basada en estos agentes antineoplásicos.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/análise , Doxorrubicina/administração & dosagem , Hipertermia Induzida , Compostos Organoplatínicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Carcinoma/tratamento farmacológico , Terapia Combinada , Estabilidade de Medicamentos , Humanos , Injeções Intraperitoneais , Oxaliplatina , Neoplasias Peritoneais/tratamento farmacológico , Soluções Farmacêuticas
4.
Farm. hosp ; 38(3): 154-161, mayo-jun. 2014. tab
Artigo em Espanhol | IBECS | ID: ibc-125335

RESUMO

Objetivo: Determinar in vitro la estabilidad físico-química de oxaliplatino y doxorrubicina en las condiciones de hipertermia utilizadas in vivo durante el tratamiento de pacientes con carcinomatosis peritoneal, tras cirugía cito Métodos: Se prepararon tres disoluciones: A (oxaliplatino 200 mg/L), B(doxorrubicina 15 mg/L) y C (oxaliplatino 200 mg/L + doxorrubicina 15 mg/L)en glucosa al 5%. Las tres disoluciones se sometieron a la temperatura máxima alcanzada in vivo (49º C) durante dos horas. La estabilidad física se centró en el control visual de partículas y/o precipitados en las disoluciones, el desprendimiento de gases, olor y color. Para controlar la estabilidad química, se extrajeron muestras cada 15 minutos desde el inicio del estudio yse determinó la concentración remanente de oxaliplatino y doxorrubicina en las mismas. Las concentraciones de oxaliplatino se determinaron por absorción atómica con cámara de grafito mientras que doxorrubicina se determinó mediante cromatografía líquida de alta resolución. Como criterio de estabilidad química se seleccionó el establecido en la Farmacopea Americana que establece un margen de variación permitido entre el 90-110% de la concentración inicial. Resultados: Durante el tiempo de ensayo, no se observó la aparición de partículas o precipitados, ni el desprendimiento de gases o cambios de color en las disoluciones. Las muestras analizadas presentaron una concentración remanente de oxaliplatino y doxorrubicina dentro del límite de 90-110%. La estabilidad de las muestras sometidas a dos ciclos de congelación-descongelación tras la hipertermia también se encontró dentro de los límites especificados. Conclusiones: Las disoluciones A, B y C en glucosa al 5%, son estables física y químicamente a 49º C, durante dos horas. En estas condiciones, podrían ser utilizadas con garantías de estabilidad en pacientes con carcinomatosis peritoneal subsidiarios de recibir quimioterapia intraperitoneal con hipertermia basada en estos agentes antineoplásicos


Objective: To evaluate the in vitro physicochemical stability of oxaliplatin and doxorubicin when the in vivo hyperthermic intraperitoneal conditions are reproduced. Methods: Three solutions were prepared, A (oxaliplatin 200 mg/L), B(doxorubicin 15 mg/L) and C (oxaliplatin 200 mg/L with doxorubicin 15mg/L) in glucose 5%. The three solutions were subjected to the maximum temperature reached in vivo (49° C) for two hours. Physical stability was focused on visual control of particles or precipitates in solutions, discharge of gases, odor and color. Samples were taken every 15 minutes and the chemical stability was evaluated by determining the concentration of oxaliplatin and doxorubicin remaining in the samples. Oxaliplatin concentrations were determined by atomic absorption graphite chamber while doxorubicin was determined by high performance liquid chromatography. The chemical stability criteria selected was the one described by the American Pharmacopoeia, which sets a permissible variation range between the 90-110% of the initial concentration. Results: During the assay there was no appearance of particles, precipitates in the samples, discharge of gases, nor colour changes in the solutions. The samples showed a remaining concentration of oxaliplatin and doxorubicin within the 90-110% limit. The stability of the samples that follow to two cycles of freeze-thaw after hyperthermia was also found within the specified limits. Conclusion: A, B and c solutions in 5% glucose, are physically and chemi-cally stable at 49° C for two hours. Under these conditions, these solutionscould be used with guarantees of stability in patients with peritoneal carcinomatosis subsidiary of intraperitoneal hyperthermic chemotherapybased in these antineoplastic agents


Assuntos
Humanos , Estabilidade de Medicamentos , Doxorrubicina/farmacologia , Neoplasias Peritoneais/tratamento farmacológico , Antineoplásicos/administração & dosagem , Infusões Parenterais , Carcinoma/tratamento farmacológico , Fatores de Tempo , Glucose/farmacocinética , Disponibilidade Biológica , Hipertermia Induzida
5.
Farm Hosp ; 37(2): 111-27, 2013.
Artigo em Espanhol | MEDLINE | ID: mdl-23789755

RESUMO

OBJECTIVE: To evaluate the influence of genetic polymorphism in UGT1A1, UGT1A7 and UGT1A9 on the population pharmacokinetics of irinotecan and its metabolites, SN-38 and SN-38G. METHODS: Plasma concentrations of irinotecan, SN-38 and SN- 38G from 72 patients were pooled to develop a population pharmacokinetic model using NONMEM VII. M3 method was used to account for plasma concentrations below the limit quantification. The effect of age, sex, body surface area, total bilirubin, co-medication, tumor type, and UGT1A1, UGT1A7 and UGT1A9 genotypes on the model parameters was evaluated. The model was internally validated using normalized visual predictive check (NVPC) and normalized predictive distribution errors (NPDE). RESULTS: The typical values (between-subject variability; %) of the irinotecan, SN-38 and SN-38G clearances were 42,9 L/h (56,4%), 1340 L/h (76,8%) and 188 L/h (70,1%), respectively. The presence of UGT1A1*28, UGT1A7*3, UGT1A9*22 genotypes decreases SN-38 clearance between 20 and 36%. Internal validation confirms the population pharmacokinetic model describe the time course of irinotecan, SN-38 and SN-38G plasma concentration and their associated variability in cancer patients. CONCLUSION: The inclusion of pharmacokinetic-pharmacogenomic information can add value to the individualized dose adjustment of irinotecan, because it will let quantitatively handle dose reductions in patients with iatrogenic toxicity due to UGT1A1 genetic polymorphisms.


Objetivo: Evaluar la influencia de los polimorfismos genéticos en UGT1A1, UGT1A7 y UGT1A9 sobre la farmacocinética poblacional de irinotecán y sus metabolitos, SN-38 y SN-38G. Metodología: Las concentraciones plasmáticas de irinotecán, SN-38 y SN-38G determinadas en 72 pacientes se utilizaron para desarrollar un modelo farmacocinético poblacional en el programa NONMEM VII. Se empleó el método M3 para incluir en el análisis las concentraciones por debajo del límite de cuantificación de la técnica analítica. Se evaluó el efecto de la edad, sexo, superficie corporal, bilirrubina total, medicación concomitante, tipo de tumor y polimorfismos genéticos en UGT1A1, UGT1A7 y UGT1A9 sobre los parámetros farmacocineticos del modelo. La validación interna del modelo farmacocinético se realizó mediante normalized visual predictive check (NVPC) y normalized predictive distribution error (NPDE). Resultados: El valor medio (variabilidad interpaciente, %) del aclaramiento de irinotecán, SN-38 y SN-38G ha sido 42,9 (56,4%), 1340 (76,8%) y 188 L/h (70,1%), respectivamente. La presencia de alelos con baja actividad enzimática (UGT1A1*28, UGT1A7*3 y UGT1A9*22) redujo el aclaramiento de SN-38 entre un 20 y un 36%. La validación interna ha confirmado que el modelo farmacocinético poblacional resulta adecuado para describir la evolución temporal de las concentraciones plasmáticas de irinotecán, SN-38 y SN-38G y su variabilidad en pacientes oncológicos. Conclusión: La inclusión de información farmacocinética-farmacogenética puede añadir valor a la personalización de la dosificación de irinotecán por cuanto que permitirá manejar cuantitativamente las reducciones de dosis en pacientes con toxicidad iatrogénica debido a los polimorfismos genéticos en UGT1A1.


Assuntos
Antineoplásicos Fitogênicos/farmacocinética , Camptotecina/análogos & derivados , Glucuronatos/farmacocinética , Glucuronosiltransferase/genética , Polimorfismo Genético , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos Fitogênicos/sangue , Antineoplásicos Fitogênicos/uso terapêutico , Camptotecina/sangue , Camptotecina/farmacocinética , Camptotecina/uso terapêutico , Feminino , Glucuronatos/sangue , Glucuronatos/uso terapêutico , Humanos , Irinotecano , Masculino , Pessoa de Meia-Idade , Neoplasias/tratamento farmacológico , Neoplasias/genética , UDP-Glucuronosiltransferase 1A
6.
Farm. hosp ; 37(2): 111-127, mar.-abr. 2013. ilus, tab
Artigo em Espanhol | IBECS | ID: ibc-115662

RESUMO

Objetivo: Evaluar la influencia de los polimorfismos genéticos en UGT1A1, UGT1A7 y UGT1A9 sobre la farmacocinética poblacional de irinotecán y sus metabolitos, SN-38 y SN-38G. Metodología: Las concentraciones plasmáticas de irinotecán, SN-38 y SN-38G determinadas en 72 pacientes se utilizaron para desarrollar un modelo farmacocinético poblacional en el programa NONMEM VII. Se empleó el método M3 para incluir en el análisis las concentraciones por debajo del límite de cuantificación de la técnica analítica. Se evaluó el efecto de la edad, sexo, superficie corporal, bilirrubina total, medicación concomitante, tipo de tumor y polimorfismos genéticos en UGT1A1, UGT1A7 y UGT1A9 sobre los parámetros farmacocineticos del modelo. La validación interna del modelo farmacocinético se realizó mediante normalized visual predictive check(NVPC) y normalized predictive distribution error (NPDE). Resultados: El valor medio (variabilidad interpaciente, %) del aclaramiento de irinotecán, SN-38 y SN-38G ha sido 42,9 (56,4%), 1340 (76,8%) y 188 L/h (70,1%), respectivamente. La presencia de alelos con baja actividad enzimática (UGT1A1*28, UGT1A7*3 y UGT1A9*22) redujo el aclaramiento de SN-38 entre un 20 y un 36%. La validación interna ha confirmado que el modelo farmacocinético poblacional resulta adecuado para describir la evolución temporal de las concentraciones plasmáticas de irinotecán, SN-38 y SN-38G y su variabilidad en pacientes oncológicos. Conclusión: La inclusión de información farmacocinética-farmacogenética puede añadir valor a la personalización de la dosificación de irinotecán por cuanto que permitirá manejar cuantitativamente las reducciones de dosis en pacientes con toxicidad iatrogénica debido a los polimorfismos genéticos en UGT1A1 (AU)


Objective: To evaluate the Influence of genetic polymorphism in UGT1A1, UGT1A7 and UGT1A9 on the population pharmacokinetics of irinotecan and its metabolites, SN-38 and SN-38G. Methods: Plasma concentrations of irinotecan, SN-38 and SN-38G from 72 patients were pooled to develop a population pharmacokinetic model using NONMEM VII. M3 method was used to account for plasma concentrations below the limit quantification. The effect of age, sex, body surface area, total bilirubin, comedication, tumor type, and UGT1A1, UGT1A7 and UGT1A9 genotypes on the model parameters was evaluated. The model was internally validated using normalized visual predictive check (NVPC) and normalized predictive distribution errors (NPDE). Results: The typical values (between-subject variability; %) of the irinotecan, SN-38 and SN-38G clearances were 42,9 L/h (56,4%), 1340 L/h (76,8%) and 188 L/h (70,1%), respectively. The presence of UGT1A1*28, UGT1A7*3, UGT1A9*22 genotypes decreases SN-38 clearance between 20 and 36%. Internal validation confirms the population pharmacokinetic model describe the time course of irinotecan, SN-38 and SN-38G plasma concentration and their associated variability in cancer patients. Conclusion: The inclusion of pharmacokinetic-pharmacogenomic information can add value to the individualized dose adjustment of irinotecan, because it will let quantitatively handle dose reductions in patients with iatrogenic toxicity due to UGTIAVs genetic polymorphisms (AU)


Assuntos
Humanos , Inibidores da Topoisomerase I/farmacocinética , /genética , Marcadores Genéticos , Polimorfismo Genético , Técnicas de Genotipagem/métodos
7.
Farm. hosp ; 36(5): 392-402, sept.-oct. 2012. ilus, tab
Artigo em Espanhol | IBECS | ID: ibc-105962

RESUMO

Objetivo: Desarrollar y validar internamente un modelo farmacocinético poblacional para cisplatino y evaluar su capacidad predictiva para la personalización de su dosificación en pacientes oncológicos. Métodos Las concentraciones plasmáticas de cisplatino determinadas en cuarenta y seis pacientes oncológicos se utilizaron para caracterizar los parámetros farmacocinéticos de un modelo farmacocinético bicompartimental implementado en el programa NONMEN VI. La capacidad para identificar los parámetros farmacocinéticos se evaluó mediante bootstrap paramétrico. La validación interna del modelo se realizó mediante bootstrap no-paramétrico, standardized visual y numerical predictive checks. La capacidad predictiva del modelo final se evaluó en términos de exactitud y precisión durante el primer (a priori) y segundo (a posteriori) ciclo de quimioterapia. Resultados El aclaramiento poblacional de cisplatino es de 1,03 L/h, con una variabilidad interpaciente del 78,0%. El volumen de distribución estimado en estado estacionario es de 48,3 L, con unas variabilidades inter e intrapaciente del 31,3 y 11,7%, respectivamente. La validación interna ha confirmado que el modelo farmacocinético poblacional resulta adecuado para describir la evolución temporal de las concentraciones plasmáticas de cisplatino y su variabilidad en la población de estudio. La exactitud y la precisión de la predicción a posteriori de las concentraciones plasmáticas de cisplatino mejoran un 21 y un 54% respecto a la predicción a priori. Conclusión El modelo farmacocinético poblacional desarrollado caracteriza adecuadamente la evolución temporal de las concentraciones plasmáticas de cisplatino en la población de estudio y puede utilizarse de forma exacta y precisa para optimizar las pautas posológicas de cisplatino en pacientes oncológicos (AU)


Objective: To develop and internally validate a population pharmacokinetics model for cisplatin and assess its prediction capacity for personalising doses in cancer patients. Method: Cisplatin plasma concentrations in forty-six cancer patients were used to determine the pharmacokinetic parameters of a two-compartment pharmacokinetic model implemented in NONMEN VI software. Pharmacokinetic parameter identification capacity was assessed using the parametric bootstrap method and the model was validated using the nonparametric bootstrap method and standardised visual and numerical predictive checks. The final model’s prediction capacity was evaluated in terms of accuracy and precision during the first (a priori) and second(a posteriori) chemotherapy cycles. Results: Mean population cisplatin clearance is 1.03 L/h with an interpatient variability of78.0%. Estimated distribution volume at steady state was 48.3 L, with inter- and intrapatient variabilities of 31,3% and 11,7%, respectively. Internal validation confirmed that the population pharmacokinetics model is appropriate to describe changes over time in cisplatin plasma concentrations, as well as its variability in the study population. The accuracy and precision of a posteriori prediction of cisplatin concentrations improved by 21% and 54% compared to a prioriprediction. Conclusion: The population pharmacokinetic model developed adequately described the changes in cisplatin plasma concentrations in cancer patients and can be used to optimise cisplatindosing regimes accurately and precisely (AU)


Assuntos
Humanos , Cisplatino/farmacocinética , Formas de Dosagem , Neoplasias/tratamento farmacológico , Antineoplásicos/administração & dosagem , Teorema de Bayes , Quimioterapia Assistida por Computador
8.
Farm. hosp ; 36(4): 194-206, jul.-ago. 2012. ilus, tab
Artigo em Espanhol | IBECS | ID: ibc-105938

RESUMO

Objetivo: Desarrollar y validar internamente un modelo farmacocinético poblacional para gemcitabina y su metabolito 2’,2’-difluorodeoxiuridina (dFdU) y evaluar su capacidad predictiva en la personalización de la dosificación de gemcitabina en pacientes oncológicos. Métodos Las concentraciones plasmáticas de gemcitabina y dFdU se determinaron en 18 pacientes oncológicos. Se determinaron los parámetros farmacocinéticos correspondientes a un modelo farmacocinético bicompartimental mediante el programa NONMEN VI. La capacidad para identificar los parámetros se evaluó mediante bootstrap paramétrico. La validación interna del modelo se realizó mediante bootstrap no paramétrico, visual y numerical predictive check. La capacidad predictiva del modelo final se evaluó en términos de precisión y exactitud durante el primer (a priori) y segundo (a posteriori) ciclo de quimioterapia. Resultados El valor medio y la variabilidad interpaciente del aclaramiento de gemcitabina y de dFdU es de 2,70 l/min (31,0%) y 0,0515 l/min (35,8%), respectivamente. El volumen de distribución de gemcitabina y dFdU estimado en estado equilibrio estacionario es de 30 y 238 l, respectivamente. La validación interna confirma que el modelo farmacocinético poblacional resulta adecuado para describir la evolución temporal de las concentraciones plasmáticas de gemcitabina y dFdU, así como su variabilidad en la población de estudio. La exactitud y la precisión a posteriori de las concentraciones plasmáticas de gemcitabina mejoran un 67% y un 46%, respectivamente, respecto a la predicción a priori. Conclusión El modelo farmacocinético poblacional desarrollado caracteriza adecuadamente la evolución temporal de las concentraciones plasmáticas de gemcitabina y dFdU en la población de estudio y puede utilizarse de forma exacta y precisa para optimizar las pautas posológicas de gemcitabina en pacientes oncológicos (AU)


Objective: To develop and internally validate a population pharmacokinetic model for gemcitabine and its metabolite 2’,2’-difluorodeoxyuridine (dFdU); and to evaluate its predictive perfomance for personalizing the dosage used in cancer patients. Methods: Gemcitabine and dFdU plasma concentrations were determined in 18 cancer patients. A 2-compartment pharmacokinetic model was implemented in the NONMEN VI program to determine the appropriate pharmacokinetic parameters. The power to identify the parameters was assessed by parametric bootstrap, and the internal model validation was performed using nonparametric bootstrap and visual and numerical predictive check methods. The final predictive performance of the model was assessed for accuracy and precision during the first (a priori)and second (a posteriori) chemotherapy cycles. Results: The mean and interpatient variability of gemcitabine and dFdU clearance was2.70L/min (31.0%) and 0.0515L/min (35.8%), respectively. The estimated distribution volumeat steady state was 30L for gemcitabine and 238L for dFdU. Internal validation confirmed that the population pharmacokinetic model was appropriate for describing the plasma concentrations of gemcitabine and dFdU over time, as well as its variability in the study population. The accuracy and precision of a posteriori gemcitabine plasma concentrations improved by 67% and46%, respectively, compared to the a priori prediction. Conclusion: The population pharmacokinetic model adequately characterised the gemcitabine and dFdU plasma concentrations in the study population over time, and can be used to accurately and precisely optimise gemcitabine dosing regimens in cancer patients (AU)


Assuntos
Humanos , Antineoplásicos/farmacocinética , Disponibilidade Biológica , Citarabina/farmacocinética , Biomarcadores Farmacológicos/análise , Esquema de Medicação , Teorema de Bayes
9.
Farm. hosp ; 36(4): 282-291, jul.-ago. 2012. ilus, tab
Artigo em Espanhol | IBECS | ID: ibc-105949

RESUMO

Objetivo: Desarrollar y validar internamente un modelo farmacocinético poblacional para doxorubicina y evaluar su capacidad predictiva en la personalización de su dosificación en pacientes oncológicos. Métodos Las concentraciones plasmáticas de doxorubicina se determinaron en treinta y tres pacientes oncológicos, y se utilizó un modelo farmacocinético tricompartimental implementado en el programa NONMEN VI para determinar los parámetros farmacocinéticos. La identificabilidad de los parámetros se evaluó mediante bootstrap paramétrico, y la validación interna del modelo se realizó mediante bootstrap no-paramétrico, visual predictive check y numerical predictive check. La capacidad predictiva del modelo final se evaluó en términos de exactitud y precision de las concentraciones plasmáticas durante el primer y segundo ciclo de quimioterapia. Resultados El aclaramiento de doxorubicina es de 58,8 l/h, con una variabilidad interpaciente del 29,2% y una variabilidad intrapaciente del 18,9%. El volumen de distribución estimado en estado estacionario es de 2.294 l, con unas variabilidades inter e intrapaciente del 7,3% y 26,1%, respectivamente. La validación interna confirma que el modelo farmacocinético poblacional resulta adecuado para describir la evolución temporal de las concentraciones plasmáticas de doxorubicina y su variabilidad en la población de estudio. La exactitud y la precisión de la predicción a posteriori de las concentraciones plasmáticas de doxorubicina mejoran un 63% y un 41% respecto a la predicción a priori. Conclusión El modelo bayesiano poblacional desarrollado caracteriza adecuadamente la evolución temporal de las concentraciones plasmáticas de doxorubicina en la población de estudio y puede utilizarse de forma exacta y precisa para optimizar las pautas posológicas de doxorubicina en pacientes oncológicos (AU)


Objective: To develop and internally validate a population pharmacokinetic model for doxorubicin and to evaluate its predictive performance for dose individualization in cancer patients. Methods: Doxorubicin plasma concentrations were determined in thirty-three cancer patients treated with intravenous doxorubicin. A three-compartment pharmacokinetic model was implemented in the NONMEN VI programme to determine the doxorubicin pharmacokinetic parameters. The identifiability of the parameters was assessed by parametric bootstrap and model validation was performed using nonparametric bootstrap, visual predictive check, and numerical predictive check. The final model‘s predictive performance was evaluated interms of accuracy and precision of plasma concentration predictions during the first and secondcycles of chemotherapy. Results: Doxorubicin clearance was 58.8L/h, with interpatient variability of 29.2% and intrapatient variability of 18.9%. The estimated volume of distribution at steady state was 2294L, with inter-and intrapatient variability of 7.3% and 26.1%, respectively. Internal validation confirmed that the population pharmacokinetic model is appropriate to describe the time course of the doxorubicin plasma concentrations and its variability in this population. The accuracy and precision of an a posteriori prediction of doxorubicin plasma concentrations improved by 63% and41% compared to the a priori prediction. Conclusion: The Bayesian population pharmacokinetic model characterised the time course of doxorubicine plasma concentrations and can be accurately and precisely used to optimized oxorubicine dosing regimens in cancer patients (AU)


Assuntos
Humanos , Doxorrubicina/farmacocinética , Neoplasias/tratamento farmacológico , Disponibilidade Biológica , Teorema de Bayes , Antineoplásicos/sangue
10.
Farm Hosp ; 36(5): 392-402, 2012.
Artigo em Espanhol | MEDLINE | ID: mdl-22402361

RESUMO

OBJECTIVE: To develop and internally validate a population pharmacokinetics model for cisplatin and assess its prediction capacity for personalising doses in cancer patients. METHOD: Cisplatin plasma concentrations in forty-six cancer patients were used to determine the pharmacokinetic parameters of a two-compartment pharmacokinetic model implemented in NONMEN VI software. Pharmacokinetic parameter identification capacity was assessed using the parametric bootstrap method and the model was validated using the nonparametric bootstrap method and standardised visual and numerical predictive checks. The final model's prediction capacity was evaluated in terms of accuracy and precision during the first (a priori) and second (a posteriori) chemotherapy cycles. RESULTS: Mean population cisplatin clearance is 1.03 L/h with an interpatient variability of 78.0%. Estimated distribution volume at steady state was 48.3 L, with inter- and intrapatient variabilities of 31,3% and 11,7%, respectively. Internal validation confirmed that the population pharmacokinetics model is appropriate to describe changes over time in cisplatin plasma concentrations, as well as its variability in the study population. The accuracy and precision of a posteriori prediction of cisplatin concentrations improved by 21% and 54% compared to a priori prediction. CONCLUSION: The population pharmacokinetic model developed adequately described the changes in cisplatin plasma concentrations in cancer patients and can be used to optimise cisplatin dosing regimes accurately and precisely.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Cisplatino/administração & dosagem , Cisplatino/farmacocinética , Neoplasias/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Antineoplásicos/uso terapêutico , Cisplatino/uso terapêutico , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Neoplasias/tratamento farmacológico , Software , Adulto Jovem
11.
Farm Hosp ; 36(4): 194-206, 2012.
Artigo em Espanhol | MEDLINE | ID: mdl-22078546

RESUMO

OBJECTIVE: To develop and internally validate a population pharmacokinetic model for gemcitabine and its metabolite 2',2'-difluorodeoxyuridine (dFdU); and to evaluate its predictive perfomance for personalizing the dosage used in cancer patients. METHODS: Gemcitabine and dFdU plasma concentrations were determined in 18 cancer patients. A 2-compartment pharmacokinetic model was implemented in the NONMEN VI program to determine the appropriate pharmacokinetic parameters. The power to identify the parameters was assessed by parametric bootstrap, and the internal model validation was performed using nonparametric bootstrap and visual and numerical predictive check methods. The final predictive performance of the model was assessed for accuracy and precision during the first (a priori) and second (a posteriori) chemotherapy cycles. RESULTS: The mean and interpatient variability of gemcitabine and dFdU clearance was 2.70 L/min (31.0%) and 0.0515 L/min (35.8%), respectively. The estimated distribution volume at steady state was 30 L for gemcitabine and 238 L for dFdU. Internal validation confirmed that the population pharmacokinetic model was appropriate for describing the plasma concentrations of gemcitabine and dFdU over time, as well as its variability in the study population. The accuracy and precision of a posteriori gemcitabine plasma concentrations improved by 67% and 46%, respectively, compared to the a priori prediction. CONCLUSION: The population pharmacokinetic model adequately characterised the gemcitabine and dFdU plasma concentrations in the study population over time, and can be used to accurately and precisely optimise gemcitabine dosing regimens in cancer patients.


Assuntos
Antimetabólitos Antineoplásicos/farmacocinética , Desoxicitidina/análogos & derivados , Neoplasias/tratamento farmacológico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antimetabólitos Antineoplásicos/administração & dosagem , Desoxicitidina/administração & dosagem , Desoxicitidina/farmacocinética , Feminino , Floxuridina/análogos & derivados , Floxuridina/sangue , Previsões , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/metabolismo , Medicina de Precisão , Reprodutibilidade dos Testes , Adulto Jovem , Gencitabina
12.
Farm Hosp ; 36(4): 282-91, 2012.
Artigo em Espanhol | MEDLINE | ID: mdl-22129650

RESUMO

OBJECTIVE: To develop and internally validate a population pharmacokinetic model for doxorubicin and to evaluate its predictive performance for dose individualization in cancer patients. METHODS: Doxorubicin plasma concentrations were determined in thirty-three cancer patients treated with intravenous doxorubicin. A three-compartment pharmacokinetic model was implemented in the NONMEN VI programme to determine the doxorubicin pharmacokinetic parameters. The identifiability of the parameters was assessed by parametric bootstrap and model validation was performed using nonparametric bootstrap, visual predictive check, and numerical predictive check. The final model's predictive performance was evaluated in terms of accuracy and precision of plasma concentration predictions during the first and second cycles of chemotherapy. RESULTS: Doxorubicin clearance was 58.8 L/h, with interpatient variability of 29.2% and intrapatient variability of 18.9%. The estimated volume of distribution at steady state was 2294 L, with inter-and intrapatient variability of 7.3% and 26.1%, respectively. Internal validation confirmed that the population pharmacokinetic model is appropriate to describe the time course of the doxorubicin plasma concentrations and its variability in this population. The accuracy and precision of an a posteriori prediction of doxorubicin plasma concentrations improved by 63% and 41% compared to the a priori prediction. CONCLUSION: The Bayesian population pharmacokinetic model characterised the time course of doxorubicine plasma concentrations and can be accurately and precisely used to optimise doxorubicine dosing regimens in cancer patients.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacocinética , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Neoplasias/tratamento farmacológico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Teorema de Bayes , Relação Dose-Resposta a Droga , Feminino , Humanos , Injeções Intravenosas , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Medicina de Precisão , Reprodutibilidade dos Testes , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...