Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38645166

RESUMO

Islet transplantation for treatment of diabetes is limited by availability of donor islets and requirements for immunosuppression. Stem cell-derived islets might circumvent these issues. SC-islets effectively control glucose metabolism post transplantation, but do not yet achieve full function in vitro with current published differentiation protocols. We aimed to identify markers of mature subpopulations of SC-ß cells by studying transcriptional changes associated with in vivo maturation of SC-ß cells using RNA-seq and co-expression network analysis. The ß cell-specific hormone islet amyloid polypeptide (IAPP) emerged as the top candidate to be such a marker. IAPP+ cells had more mature ß cell gene expression and higher cellular insulin content than IAPP- cells in vitro. IAPP+ INS+ cells were more stable in long-term culture than IAPP- INS+ cells and retained insulin expression after transplantation into mice. Finally, we conducted a small molecule screen to identify compounds that enhance IAPP expression. Aconitine up-regulated IAPP and could help to optimize differentiation protocols.

2.
Cancer Immunol Res ; 10(8): 947-961, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35678717

RESUMO

Activation of the stimulator of interferon genes (STING) pathway promotes antitumor immunity but STING agonists have yet to achieve clinical success. Increased understanding of the mechanism of action of STING agonists in human tumors is key to developing therapeutic combinations that activate effective innate antitumor immunity. Here, we report that malignant pleural mesothelioma cells robustly express STING and are responsive to STING agonist treatment ex vivo. Using dynamic single-cell RNA sequencing of explants treated with a STING agonist, we observed CXCR3 chemokine activation primarily in tumor cells and cancer-associated fibroblasts, as well as T-cell cytotoxicity. In contrast, primary natural killer (NK) cells resisted STING agonist-induced cytotoxicity. STING agonists enhanced migration and killing of NK cells and mesothelin-targeted chimeric antigen receptor (CAR)-NK cells, improving therapeutic activity in patient-derived organotypic tumor spheroids. These studies reveal the fundamental importance of using human tumor samples to assess innate and cellular immune therapies. By functionally profiling mesothelioma tumor explants with elevated STING expression in tumor cells, we uncovered distinct consequences of STING agonist treatment in humans that support testing combining STING agonists with NK and CAR-NK cell therapies.


Assuntos
Imunoterapia Adotiva , Células Matadoras Naturais , Proteínas de Membrana , Mesotelioma Maligno , Linhagem Celular Tumoral , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Proteínas de Membrana/agonistas , Receptores de Antígenos Quiméricos
3.
Cancer Res ; 82(8): 1633-1645, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35149586

RESUMO

In-frame insertions in exon 20 of HER2 are the most common HER2 mutations in patients with non-small cell lung cancer (NSCLC), a disease in which approved EGFR/HER2 tyrosine kinase inhibitors (TKI) display poor efficiency and undesirable side effects due to their strong inhibition of wild-type (WT) EGFR. Here, we report a HER2-selective covalent TKI, JBJ-08-178-01, that targets multiple HER2 activating mutations, including exon 20 insertions as well as amplification. JBJ-08-178-01 displayed strong selectivity toward HER2 mutants over WT EGFR compared with other EGFR/HER2 TKIs. Determination of the crystal structure of HER2 in complex with JBJ-08-178-01 suggests that an interaction between the inhibitor and Ser783 may be responsible for HER2 selectivity. The compound showed strong antitumoral activity in HER2-mutant or amplified cancers in vitro and in vivo. Treatment with JBJ-08-178-01 also led to a reduction in total HER2 by promoting proteasomal degradation of the receptor. Taken together, the dual activity of JBJ-08-178-01 as a selective inhibitor and destabilizer of HER2 represents a combination that may lead to better efficacy and tolerance in patients with NSCLC harboring HER2 genetic alterations or amplification. SIGNIFICANCE: This study describes unique mechanisms of action of a new mutant-selective HER2 kinase inhibitor that reduces both kinase activity and protein levels of HER2 in lung cancer.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Éxons , Humanos , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Inibidores de Proteínas Quinases/efeitos adversos , Receptor ErbB-2/metabolismo
4.
Cancer Res ; 82(1): 130-141, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34548332

RESUMO

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) are the standard-of-care treatment for EGFR-mutant non-small cell lung cancers (NSCLC). However, most patients develop acquired drug resistance to EGFR TKIs. HER3 is a unique pseudokinase member of the ERBB family that functions by dimerizing with other ERBB family members (EGFR and HER2) and is frequently overexpressed in EGFR-mutant NSCLC. Although EGFR TKI resistance mechanisms do not lead to alterations in HER3, we hypothesized that targeting HER3 might improve efficacy of EGFR TKI. HER3-DXd is an antibody-drug conjugate (ADC) comprised of HER3-targeting antibody linked to a topoisomerase I inhibitor currently in clinical development. In this study, we evaluated the efficacy of HER3-DXd across a series of EGFR inhibitor-resistant, patient-derived xenografts and observed it to be broadly effective in HER3-expressing cancers. We further developed a preclinical strategy to enhance the efficacy of HER3-DXd through osimertinib pretreatment, which increased membrane expression of HER3 and led to enhanced internalization and efficacy of HER3-DXd. The combination of osimertinib and HER3-DXd may be an effective treatment approach and should be evaluated in future clinical trials in EGFR-mutant NSCLC patients. SIGNIFICANCE: EGFR inhibition leads to increased HER3 membrane expression and promotes HER3-DXd ADC internalization and efficacy, supporting the clinical development of the EGFR inhibitor/HER3-DXd combination in EGFR-mutant lung cancer.See related commentary by Lim et al., p. 18.


Assuntos
Antineoplásicos/uso terapêutico , Receptores ErbB/antagonistas & inibidores , Imunoconjugados/metabolismo , Receptor ErbB-3/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Humanos , Camundongos
5.
Acad Med ; 95(4): 548-552, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31833852

RESUMO

PROBLEM: As biomedical research and clinical medicine become increasingly complex, physician-scientists and clinically oriented biomedical researchers play important roles in bridging the gap between disciplines. A lack of educational programming that addresses the unique needs of students preparing for careers at the interface of basic science and clinical medicine may contribute to trainee attrition. APPROACH: The MD-PhD/LHB Grand Rounds was introduced in 2008 as a trainee-driven collaborative effort of the Harvard/Massachusetts Institute of Technology MD-PhD program at Harvard Medical School (HMS MD-PhD program), Harvard's Leder Human Biology and Translational Medicine (LHB) program, and the Brigham and Women's Hospital (BWH) Internal Medicine Department. Each of the program's approximately 4 sessions per year begins with dinner, followed by a clinical case presentation led by a BWH MD-PhD resident with a master clinician faculty discussant, then a research presentation by an LHB PhD student or an MD-PhD student on a basic science topic related to the clinical case, and time for socialization. OUTCOMES: In a July 2017 survey of participating students and residents, respondents reported being highly satisfied with the program. Mean satisfaction ratings were 4.3 (SD 0.5) for 12 MD-PhD students, 4.2 (SD 0.7) for 31 LHB students, and 4.4 (SD 0.9) for 5 residents on a 5-point scale (5 = very satisfied). Free-text responses suggested MD-PhD students valued opportunities for active engagement with the resident presenter and faculty discussant. LHB students appreciated the absence of medical jargon in the clinical presentations. Residents' reported reasons for participating included enjoyment of teaching and interaction with students. NEXT STEPS: The Harvard MD-PhD/LHB Grand Rounds can serve as a template for developing similar programs at other institutions. Research is needed to determine whether such grand rounds programs can help fix the leaky pipeline in the training of future physician-scientists and clinically oriented biomedical researchers.


Assuntos
Internato e Residência , Estudantes de Medicina , Visitas de Preceptoria , Pesquisa Biomédica , Docentes de Medicina , Humanos , Medicina Interna , Pesquisadores , Pesquisa Translacional Biomédica
6.
Pharmacol Ther ; 184: 112-130, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29129643

RESUMO

Advanced non-small cell lung cancer (NSCLC) continues to be an incurable family of thoracic malignancies that is chronically managed with chemotherapy, targeted therapy, and immunotherapy. While the discovery of driver oncogenes and the advent of targeted and immunotherapies in the last decade have vastly improved clinical disease management for patients harboring druggable mutations, the mainstay treatment for the majority of NSCLC patients remains cytotoxic chemotherapy. The clinical efficacy of targeted, immune, and cytotoxic therapies is limited by the development of drug resistance. Transforming growth factor beta (TGFß) signaling, a crucial mediator of embryonic development and peripheral immune tolerance, may be dysregulated in some malignant contexts, including lung cancer, and has been correlated with poor prognosis in advanced cancers. Aberrant upregulation of TGFß expression in the tumor microenvironment has also been implicated in promoting NSCLC progression and metastasis, as well as driving the development of resistance to cytotoxic, targeted, and immunomodulatory therapeutic interventions. Here, we examine the mechanisms underlying TGFß-mediated drug resistance in NSCLC, and consider TGFß as a combinatorial therapeutic intervention to circumvent or delay the development of NSCLC treatment resistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Fator de Crescimento Transformador beta/antagonistas & inibidores , Animais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Modelos Biológicos , Terapia de Alvo Molecular/métodos , Transdução de Sinais/efeitos dos fármacos
7.
Mol Clin Oncol ; 1(3): 444-452, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-24649190

RESUMO

Fish oil contains the marine ω-3 polyunsaturated fatty acids (ω-3 PUFAs) docosahexaenoic (DHA) and eicosapentaenoic acid (EPA). The consumption of diets rich in these fatty acids is associated with a decreased incidence of prostate cancer. However, there is limited knowledge regarding the non-marine ω-3 PUFA α-linolenic acid (ALA). To study which ω-3 PUFAs are more effective in prostate cancer prevention, and whether the mechanisms of action are conserved between them, we investigated the effect of DHA, EPA and ALA on the human prostate cancer cell lines PC-3 and LNCaP. Different trends of inhibition of PC-3 cell proliferation were observed for the three ω-3 PUFA, with DHA having the most pronounced effects on cell proliferation, while ALA had the minimum effects of the three ω-3 PUFAs. All the ω-3 PUFAs decreased fatty acid synthase (FASN) mRNA. Concerning genes involved in inflammation, cell cycle and apoptosis, DHA regulated the most genes in all categories, followed by EPA and then ALA. In addition, DHA and EPA increased the gene expression of the pro-apoptotic protein activating transcription factor 3 mRNA. Moreover, these two fatty acids significantly induced apoptosis. In conclusion, while some mechanisms of cancer cell inhibition are conserved among ω-3 PUFA, the extent, magnitude, and duration of transcriptional changes vary for each individual fatty acid.

8.
J Nutr Biochem ; 23(5): 510-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21764284

RESUMO

The trans-10, cis-12 (10e12z) conjugated linoleic acid (CLA) isomer of CLA is responsible for loss of lipid storage or adipose tissue in vitro or in vivo. This isomer also induces inflammatory signaling in both mouse and human adipocytes in vitro. However, when these events occur and whether they are significant enough to affect other cell types are unclear. In these experiments, the 3T3-L1 cell line has been used to examine the interaction between inflammatory signaling and decreased differentiation or lipid storage induced by 10e12z CLA. In assays measuring both lipid accumulation and gene expression, differentiating 3T3-L1 cells exhibit concurrent induction of inflammatory signaling, as measured by cyclooxygenase-2 expression, and a decrease in adipocyte marker gene expression. Furthermore, in fully differentiated adipocytes, as identified in microarray assays and confirmed with real-time polymerase chain reaction, 10e12z CLA also significantly affected expression of both matrix metalloprotein-3 (MMP-3), collagen VI α 3 ColVI alpha 3 (VIα3) and the cytokine epiregulin, demonstrating that the effects of 10e12z broadly impact adipocyte function. In agreement with other experimental systems, 10e12z CLA inhibited RAW 264.7 cell proliferation; however, in response to adipocyte-conditioned media, 10e12z-CLA-treated adipocytes induced proliferation of this cell line, suggesting that the effect of 10e12z CLA is context dependent. These results are largely consistent with the known activation of the inflammatory mediator nuclear factor-κB in adipocytes in vitro and in vivo by 10e12z CLA treatment and demonstrate that adipose is an important target tissue of this isomer that impacts other cell types.


Assuntos
Adipócitos/efeitos dos fármacos , Diferenciação Celular , Citocinas/metabolismo , Ácidos Linoleicos Conjugados/farmacologia , Macrófagos/efeitos dos fármacos , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...