Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetes ; 70(10): 2402-2418, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34315727

RESUMO

The prevalence of type 2 diabetes (T2D) is increasing worldwide, but current treatments have limitations. miRNAs may play a key role in the development of T2D and can be targets for novel therapies. Here, we examined whether T2D is associated with altered expression and DNA methylation of miRNAs using adipose tissue from 14 monozygotic twin pairs discordant for T2D. Four members each of the miR-30 and let-7-families were downregulated in adipose tissue of subjects with T2D versus control subjects, which was confirmed in an independent T2D case-control cohort. Further, DNA methylation of five CpG sites annotated to gene promoters of differentially expressed miRNAs, including miR-30a and let-7a-3, was increased in T2D versus control subjects. Luciferase experiments showed that increased DNA methylation of the miR-30a promoter reduced its transcription in vitro. Silencing of miR-30 in adipocytes resulted in reduced glucose uptake and TBC1D4 phosphorylation; downregulation of genes involved in demethylation and carbohydrate/lipid/amino acid metabolism; and upregulation of immune system genes. In conclusion, T2D is associated with differential DNA methylation and expression of miRNAs in adipose tissue. Downregulation of the miR-30 family may lead to reduced glucose uptake and altered expression of key genes associated with T2D.


Assuntos
Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/genética , MicroRNAs/genética , Gêmeos Monozigóticos , Células 3T3-L1 , Tecido Adiposo/patologia , Idoso , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/patologia , Estudos de Casos e Controles , Células Cultivadas , Estudos de Coortes , Metilação de DNA , Dinamarca , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Doenças em Gêmeos/genética , Feminino , Expressão Gênica , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Gigantismo/genética , Gigantismo/patologia , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Masculino , Camundongos , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Suécia , Gêmeos Monozigóticos/genética
2.
BMC Cardiovasc Disord ; 21(1): 162, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33794782

RESUMO

BACKGROUND: Alterations in levels of circulating micro-RNAs might reflect within organ signaling or subclinical tissue injury that is linked to risk of diabetes and cardiovascular risk. We previously found that serum levels of miR-483-5p is correlated with cardiometabolic risk factors and incidence of cardiometabolic disease in a case-control sample from the populations-based Malmö Diet and Cancer Study Cardiovascular Cohort (MDC-CC). We here aimed at replicating these findings and to test for association with carotid atherosclerosis. METHODS: We measured miR-483-5p in fasting serum of 1223 healthy subjects from the baseline examination of the population-based, prospective cohort study Malmö Offspring Study (MOS) and correlated miR-483-5p to cardiometabolic risk factors and to incidence of diabetes mellitus and coronary artery disease (CAD) during 3.7 (± 1.3) years of follow-up using logistic regression. In both MOS and MDC-CC we related mir-483-5p to carotid atherosclerosis measured with ultrasound. RESULTS: In cross-sectional analysis miR-483-5p was correlated with BMI, waist circumference, HDL, and sex. After adjustment for age and sex, the association remained significant for all risk factors except for HDL. Logistic regression analysis showed significant associations between miR-483-5p and new-onset diabetes (OR = 1.94, 95% CI 1.06-3.56, p = 0.032) and cardiovascular disease (OR = 1.99, 95% CI 1.06-3.75, p = 0.033) during 3.7 (± 1.3) years of follow-up. Furthermore, miR-483-5p was significantly related with maximum intima-media thickness of the carotid bulb in MDC-CC (p = 0.001), but not in MOS, whereas it was associated with increasing number of plaques in MOS (p = 0.007). CONCLUSION: miR-483-5p is related to an unfavorable cardiometabolic risk factor profile and predicts diabetes and CAD, possibly through an effect on atherosclerosis. Our results encourage further studies of possible underlying mechanisms and means of modifying miR-483-5p as a possible interventional target in prevention of cardiometabolic disease.


Assuntos
Síndrome Metabólica/sangue , Síndrome Metabólica/prevenção & controle , MicroRNAs/sangue , Adulto , Idoso , Biomarcadores/sangue , Fatores de Risco Cardiometabólico , Doenças das Artérias Carótidas/sangue , Doenças das Artérias Carótidas/epidemiologia , Doenças das Artérias Carótidas/genética , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/genética , Estudos Transversais , Diabetes Mellitus/sangue , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/genética , Feminino , Humanos , Incidência , Masculino , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/genética , MicroRNAs/genética , Pessoa de Meia-Idade , Estudos Prospectivos , Medição de Risco , Suécia , Fatores de Tempo
3.
PLoS One ; 16(3): e0247888, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33711030

RESUMO

Insulin secretion is impaired with increasing age. In this study, we aimed to determine whether aging induces specific transcriptional changes in human islets. Laser capture microdissection was used to extract pancreatic islet tissue from 37 deceased organ donors aged 1-81 years. The transcriptomes of the extracted islets were analysed using Ion AmpliSeq sequencing. 346 genes that co-vary significantly with age were found. There was an increased transcription of genes linked to senescence, and several aspects of the cell cycle machinery were downregulated with increasing age. We detected numerous genes not linked to aging in previous studies likely because earlier studies analysed islet cells isolated by enzymatic digestion which might affect the islet transcriptome. Among the novel genes demonstrated to correlate with age, we found an upregulation of SPP1 encoding osteopontin. In beta cells, osteopontin has been seen to be protective against both cytotoxicity and hyperglycaemia. In summary, we present a transcriptional profile of aging in human islets and identify genes that could affect disease course in diabetes.


Assuntos
Ilhotas Pancreáticas/metabolismo , Transcriptoma , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Ciclo Celular/genética , Senescência Celular/genética , Criança , Pré-Escolar , Feminino , Perfilação da Expressão Gênica , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Adulto Jovem
4.
Nat Commun ; 11(1): 5611, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154349

RESUMO

Fine-tuning of insulin release from pancreatic ß-cells is essential to maintain blood glucose homeostasis. Here, we report that insulin secretion is regulated by a circular RNA containing the lariat sequence of the second intron of the insulin gene. Silencing of this intronic circular RNA in pancreatic islets leads to a decrease in the expression of key components of the secretory machinery of ß-cells, resulting in impaired glucose- or KCl-induced insulin release and calcium signaling. The effect of the circular RNA is exerted at the transcriptional level and involves an interaction with the RNA-binding protein TAR DNA-binding protein 43 kDa (TDP-43). The level of this circularized intron is reduced in the islets of rodent diabetes models and of type 2 diabetic patients, possibly explaining their impaired secretory capacity. The study of this and other circular RNAs helps understanding ß-cell dysfunction under diabetes conditions, and the etiology of this common metabolic disorder.


Assuntos
Secreção de Insulina/genética , Insulina/genética , Íntrons , RNA Circular/metabolismo , Animais , Sinalização do Cálcio , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Regulação da Expressão Gênica , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Camundongos , RNA Circular/genética , Ratos
5.
Methods Mol Biol ; 2128: 25-54, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32180184

RESUMO

The polygenic background of selectively bred diabetes models mimics the etiology of type 2 diabetes. So far, three different rodent models (Goto-Kakizaki rats, Nagoya-Shibata-Yasuda mice, and Oikawa-Nagao mice) have been established in the diabetes research field by continuous selective breeding for glucose tolerance from outbred rodent stocks. The origin of hyperglycemia in these rodents is mainly insulin secretion deficiency from the pancreatic ß-cells and mild insulin resistance in insulin target organs. In this chapter, we summarize backgrounds and phenotypes of these rodent models to highlight their importance in diabetes research. Then, we introduce experimental methodologies to evaluate ß-cell exocytosis as a putative common defect observed in these rodent models.


Assuntos
Diabetes Mellitus Experimental/genética , Seleção Artificial/genética , Animais , Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/etiologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Exocitose , Perfilação da Expressão Gênica/métodos , Intolerância à Glucose , Resistência à Insulina/fisiologia , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/química , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/fisiologia , Camundongos , Camundongos Endogâmicos C3H , Técnicas de Patch-Clamp/métodos , Fenótipo , Ratos , Ratos Wistar
6.
PLoS One ; 13(11): e0206974, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30408096

RESUMO

Our aim was to identify serum microRNAs (miRNAs) in healthy humans which associate with future onset of both diabetes mellitus and cardiovascular disease. We performed global profiling of 753 mature human miRNAs in serum of 12 pilot subjects followed by measurement of 47 consistently expressed miRNAs in fasting serum of 553 healthy subjects from the baseline exam (1991-1994) of the population based Malmö Diet and Cancer Study Cardiovascular Cohort (MDC-CC), of whom 140 developed diabetes, and 169 cardiovascular diseases during follow-up. We used multivariate logistic regression to test individual miRNAs for association with incident diabetes and cardiovascular disease as compared to control subjects (n = 259). After Bonferroni correction and adjustment for age and sex, each SD increment of log-transformed miR-483-5p was significantly associated with both incident diabetes (OR = 1.48; 95% CI 1.18-1.84, P = 0.001) and cardiovascular disease (OR = 1.40; 95% CI 1.15, 1.72, P = 0.001). In cross sectional analysis, miR-483-5p was correlated with BMI (r = 0.162, P = 0.0001), fasting insulin (r = 0.156, P = 0.0002), HDL (r = -0.099, P = 0.02) and triglycerides (r = 0.11, P = 0.01). Adjustment for these metabolic risk factors, as well as traditional risk factors attenuated the miR-483-5p association with incident diabetes (OR = 1.28 95% CI 1.00-1.64, P = 0.049) whereas its association with incident cardiovascular disease remained virtually unchanged (OR = 1.46 95% CI, 1.18-1.81, P = 0.0005). In conclusion, miR-483-5p associates with both diabetes and cardiovascular disease. The association with diabetes seems partly mediated by obesity and insulin resistance, whereas the association with incident cardiovascular disease is independent of these metabolic factors and traditional cardiovascular disease risk factors.


Assuntos
Doenças Cardiovasculares/diagnóstico , Diabetes Mellitus Tipo 2/diagnóstico , Resistência à Insulina/genética , MicroRNAs/sangue , Obesidade/patologia , Idoso , Biomarcadores/sangue , Índice de Massa Corporal , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Estudos Transversais , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Feminino , Humanos , Incidência , Insulina/sangue , Lipoproteínas HDL/sangue , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Obesidade/genética , Razão de Chances , Fatores de Risco , Triglicerídeos/sangue
7.
Mol Metab ; 6(11): 1407-1418, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29107288

RESUMO

OBJECTIVE: Non-coding RNAs constitute a major fraction of the ß-cell transcriptome. While the involvement of microRNAs is well established, the contribution of long non-coding RNAs (lncRNAs) in the regulation of ß-cell functions and in diabetes development remains poorly understood. The aim of this study was to identify novel islet lncRNAs differently expressed in type 2 diabetes models and to investigate their role in ß-cell failure and in the development of the disease. METHODS: Novel transcripts dysregulated in the islets of diet-induced obese mice were identified by high throughput RNA-sequencing coupled with de novo annotation. Changes in the level of the lncRNAs were assessed by real-time PCR. The functional role of the selected lncRNAs was determined by modifying their expression in MIN6 cells and primary islet cells. RESULTS: We identified about 1500 novel lncRNAs, a number of which were differentially expressed in obese mice. The expression of two lncRNAs highly enriched in ß-cells, ßlinc2, and ßlinc3, correlated to body weight gain and glycemia levels in obese mice and was also modified in diabetic db/db mice. The expression of both lncRNAs was also modulated in vitro in isolated islet cells by glucolipotoxic conditions. Moreover, the expression of the human orthologue of ßlinc3 was altered in the islets of type 2 diabetic patients and was associated to the BMI of the donors. Modulation of the level of ßlinc2 and ßlinc3 by overexpression or downregulation in MIN6 and mouse islet cells did not affect insulin secretion but increased ß-cell apoptosis. CONCLUSIONS: Taken together, the data show that lncRNAs are modulated in a model of obesity-associated type 2 diabetes and that variations in the expression of some of them may contribute to ß-cell failure during the development of the disease.


Assuntos
Diabetes Mellitus Tipo 2/genética , RNA Longo não Codificante/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Expressão Gênica/genética , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , RNA Longo não Codificante/genética , Análise de Sequência de RNA , Transcriptoma
8.
PeerJ ; 5: e3503, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28674658

RESUMO

MicroRNAs are small non-coding RNAs, which negatively regulate the expression of target genes. They have emerged as important modulators in beta cell compensation upon increased metabolic demand, failure of which leads to reduced insulin secretion and type 2 diabetes. To elucidate the function of miRNAs in beta cells, insulin-secreting cell lines, such as the rat insulinoma INS-1 832/13 and the human EndoC-ßH1, are widely used. Previous studies in the cancer field have suggested that miRNA expression is influenced by confluency of adherent cells. We therefore aimed to investigate whether one of the most enriched miRNAs in the pancreatic endocrine cells, miR-375, and two of its validated targets in mouse, Cav1 and Aifm1, were differentially-expressed in cell cultures with different confluences. Additionally, we measured the expression of other miRNAs, such as miR-152, miR-130a, miR-132, miR-212 and miR-200a, with known roles in beta cell function. We did not see any significant expression changes of miR-375 nor any of the two targets, in both the rat and human beta cell lines at different confluences. Interestingly, among the other miRNAs measured, the expression of miR-132 and miR-212 positively correlated with confluence, but only in the INS-1 832/13 cells. Our results show that the expression of miR-375 and other miRNAs with known roles in beta cell function is independent of, or at least minimally influenced by the density of proliferating adherent cells, especially within the confluence range optimal for functional assays to elucidate miRNA-dependent regulatory mechanisms in the beta cell.

9.
Diabetes ; 66(4): 1074-1085, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28052964

RESUMO

Current knowledge about the role of epigenetics in type 2 diabetes (T2D) remains limited. Only a few studies have investigated DNA methylation of selected candidate genes or a very small fraction of genomic CpG sites in human pancreatic islets, the tissue of primary pathogenic importance for diabetes. Our aim was to characterize the whole-genome DNA methylation landscape in human pancreatic islets, to identify differentially methylated regions (DMRs) in diabetic islets, and to investigate the function of DMRs in islet biology. Here, we performed whole-genome bisulfite sequencing, which is a comprehensive and unbiased method to study DNA methylation throughout the genome at a single nucleotide resolution, in pancreatic islets from donors with T2D and control subjects without diabetes. We identified 25,820 DMRs in islets from individuals with T2D. These DMRs cover loci with known islet function, e.g., PDX1, TCF7L2, and ADCY5 Importantly, binding sites previously identified by ChIP-seq for islet-specific transcription factors, enhancer regions, and different histone marks were enriched in the T2D-associated DMRs. We also identified 457 genes, including NR4A3, PARK2, PID1, SLC2A2, and SOCS2, that had both DMRs and significant expression changes in T2D islets. To mimic the situation in T2D islets, candidate genes were overexpressed or silenced in cultured ß-cells. This resulted in impaired insulin secretion, thereby connecting differential methylation to islet dysfunction. We further explored the islet methylome and found a strong link between methylation levels and histone marks. Additionally, DNA methylation in different genomic regions and of different transcript types (i.e., protein coding, noncoding, and pseudogenes) was associated with islet expression levels. Our study provides a comprehensive picture of the islet DNA methylome in individuals with and without diabetes and highlights the importance of epigenetic dysregulation in pancreatic islets and T2D pathogenesis.


Assuntos
Metilação de DNA/genética , Diabetes Mellitus Tipo 2/genética , Epigênese Genética , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Adulto , Idoso , Estudos de Casos e Controles , Células Cultivadas , Feminino , Humanos , Secreção de Insulina , Masculino , Pessoa de Meia-Idade , Análise de Sequência de DNA
10.
Diabetol Int ; 8(2): 139-152, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30603317

RESUMO

The changes in life-style with increased access of food and reduced physical activity have resulted in the global epidemic of obesity. Consequently, individuals with type 2 diabetes and cardiovascular disease have also escalated. A central organ in the development of diabetes is the pancreas, and more specifically the pancreatic beta cells within the islets of Langerhans. Beta cells have been assigned the important task of secreting insulin when blood glucose is increased to lower the glucose level. An early sign of diabetes pathogenesis is lack of first phase insulin response and reduced second phase secretion. In this review, which is based on the foreign investigator award lecture given at the JSDC meeting in Sendai in October 2016, we discuss a possible cellular explanation for the reduced first phase insulin response and how this can be influenced by lipids. Moreover, since patients with cardiovascular disease and high levels of cholesterol are often treated with statins, we summarize recent data regarding effects on statins on glucose homeostasis and insulin secretion. Finally, we suggest microRNAs (miRNAs) as central players in the adjustment of beta cell function during the development of diabetes. We specifically discuss miRNAs regarding their involvement in insulin secretion regulation, differential expression in type 2 diabetes, and potential as biomarkers for prediction of diabetes and cardiovascular complications.

11.
Diabetol Int ; 8(2): 153, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-30605173

RESUMO

[This corrects the article DOI: 10.1007/s13340-017-0304-4.].

12.
Mol Cell Endocrinol ; 424: 23-33, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26797246

RESUMO

MicroRNAs are central players in the control of insulin secretion, but their transcriptional regulation is poorly understood. Our aim was to investigate cAMP-mediated transcriptional regulation of the miR-212/miR-132 cluster and involvement of further upstream proteins in insulin secreting ß-cells. cAMP induced by forskolin+IBMX or GLP-1 caused increased expression of miR-212/miR-132, and elevated phosphorylation of cAMP-response-element-binding-protein (CREB)/Activating-transcription-factor-1 (ATF1) and Salt-Inducible-Kinases (SIKs). CyclicAMP-Regulated Transcriptional Co-activator-1 (CRTC1) was concomitantly dephosphorylated and translocated to the nucleus. Silencing of miR-212/miR-132 reduced, and overexpression of miR-212 increased, glucose-stimulated insulin secretion. Silencing of CRTC1 expression resulted in decreased insulin secretion and miR-212/miR-132 expression, while silencing or inhibition of SIKs was associated with increased expression of the microRNAs and dephosphorylation of CRTC1. CRTC1 protein levels were reduced after silencing of miR-132, suggesting feed-back regulation. Our data propose cAMP-dependent co-regulation of miR-212/miR-132, in part mediated through SIK-regulated CRTC1, as an important factor for fine-tuned regulation of insulin secretion.


Assuntos
Glucose/farmacologia , Células Secretoras de Insulina/metabolismo , MicroRNAs/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Linhagem Celular , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Fosforilação/efeitos dos fármacos , Ratos , Ratos Wistar
13.
Genome Biol ; 15(12): 522, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25517766

RESUMO

BACKGROUND: Epigenetic factors regulate tissue-specific expression and X-chromosome inactivation. Previous studies have identified epigenetic differences between sexes in some human tissues. However, it is unclear whether epigenetic modifications contribute to sex-specific differences in insulin secretion and metabolism. Here, we investigate the impact of sex on the genome-wide DNA methylation pattern in human pancreatic islets from 53 males and 34 females, and relate the methylome to changes in expression and insulin secretion. RESULTS: Glucose-stimulated insulin secretion is higher in female versus male islets. Genome-wide DNA methylation data in human islets clusters based on sex. While the chromosome-wide DNA methylation level on the X-chromosome is higher in female versus male islets, the autosomes do not display a global methylation difference between sexes. Methylation of 8,140 individual X-chromosome sites and 470 autosomal sites shows sex-specific differences in human islets. These include sites in/near AR, DUSP9, HNF4A, BCL11A and CDKN2B. 61 X-chromosome genes and 18 autosomal genes display sex-specific differences in both DNA methylation and expression. These include NKAP, SPESP1 and APLN, which exhibited lower expression in females. Functional analyses demonstrate that methylation of NKAP and SPESP1 promoters in vitro suppresses their transcriptional activity. Silencing of Nkap or Apln in clonal beta-cells results in increased insulin secretion. Differential methylation between sexes is associated with altered levels of microRNAs miR-660 and miR-532 and related target genes. CONCLUSIONS: Chromosome-wide and gene-specific sex differences in DNA methylation associate with altered expression and insulin secretion in human islets. Our data demonstrate that epigenetics contribute to sex-specific metabolic phenotypes.


Assuntos
Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , MicroRNAs/genética , Idoso , Ilhas de CpG , Metilação de DNA , Epigênese Genética , Feminino , Expressão Gênica , Genoma Humano , Humanos , Secreção de Insulina , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Caracteres Sexuais
14.
Cell Metab ; 16(5): 625-33, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23140642

RESUMO

A plethora of candidate genes have been identified for complex polygenic disorders, but the underlying disease mechanisms remain largely unknown. We explored the pathophysiology of type 2 diabetes (T2D) by analyzing global gene expression in human pancreatic islets. A group of coexpressed genes (module), enriched for interleukin-1-related genes, was associated with T2D and reduced insulin secretion. One of the module genes that was highly overexpressed in islets from T2D patients is SFRP4, which encodes secreted frizzled-related protein 4. SFRP4 expression correlated with inflammatory markers, and its release from islets was stimulated by interleukin-1ß. Elevated systemic SFRP4 caused reduced glucose tolerance through decreased islet expression of Ca(2+) channels and suppressed insulin exocytosis. SFRP4 thus provides a link between islet inflammation and impaired insulin secretion. Moreover, the protein was increased in serum from T2D patients several years before the diagnosis, suggesting that SFRP4 could be a potential biomarker for islet dysfunction in T2D.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Células Cultivadas , Diabetes Mellitus Tipo 2/patologia , Exocitose , Expressão Gênica , Glucose/farmacologia , Hemoglobinas Glicadas/metabolismo , Humanos , Secreção de Insulina , Interleucina-1beta/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Camundongos , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo
15.
PLoS One ; 6(4): e18613, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21490936

RESUMO

BACKGROUND: The Goto-Kakizaki (GK) rat is a well-studied non-obese spontaneous type 2 diabetes (T2D) animal model characterized by impaired glucose-stimulated insulin secretion (GSIS) in the pancreatic beta cells. MicroRNAs (miRNAs) are short regulatory RNAs involved in many fundamental biological processes. We aim to identify miRNAs that are differentially-expressed in the pancreatic islets of the GK rats and investigate both their short- and long term glucose-dependence during glucose-stimulatory conditions. METHODOLOGY/PRINCIPAL FINDINGS: Global profiling of 348 miRNAs in the islets of GK rats and Wistar controls (females, 60 days, N = 6 for both sets) using locked nucleic acid (LNA)-based microarrays allowed for the clear separation of the two groups. Significant analysis of microarrays (SAM) identified 30 differentially-expressed miRNAs, 24 of which are predominantly upregulated in the GK rat islets. Monitoring of qPCR-validated miRNAs during GSIS experiments on isolated islets showed disparate expression trajectories between GK and controls indicating distinct short- and long-term glucose dependence. We specifically found expression of rno-miR-130a, rno-miR-132, rno-miR-212 and rno-miR-335 to be regulated by hyperglycaemia. The putative targets of upregulated miRNAs in the GK, filtered with glucose-regulated mRNAs, were found to be enriched for insulin-secretion genes known to be downregulated in T2D patients. Finally, the binding of rno-miR-335 to a fragment of the 3'UTR of one of known down-regulated exocytotic genes in GK islets, Stxbp1 was shown by luciferase assay. CONCLUSIONS/SIGNIFICANCE: The perturbed miRNA network found in the GK rat islets is indicative of a system-wide impairment in the regulation of genes important for the normal functions of pancreatic islets, particularly in processes involving insulin secretion during glucose stimulatory conditions. Our findings suggest that the reduced insulin secretion observed in the GK rat may be partly due to upregulated miRNA expression leading to decreased production of key proteins of the insulin exocytotic machinery.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Glucose/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , MicroRNAs/genética , Animais , Perfilação da Expressão Gênica , Técnicas In Vitro , Reação em Cadeia da Polimerase , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...