Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Psychotraumatol ; 12(1): 1995264, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868486

RESUMO

Background: Post-Traumatic Stress Disorder (PTSD) symptoms include re-experiencing, avoidance, hyperarousal, and cognitive deficits, reflecting both emotional and cognitive dysregulation. In recent years, non-pharmacological approaches and specifically animal-assisted therapy have been shown to be beneficial for a variety of disorders such as Attention-Deficit/Hyperactivity Disorder, Autism Spectrum Disorder, and PTSD. However, little is mentioned in the literature about the reciprocal effects of the animal-human interaction. Objective: To evaluate the effects of a one-year dog training programme on PTSD symptomatology in youngsters with PTSD and on dogs' behaviour. Methods: Fifty-three adolescents, previously exposed to interpersonal trauma, were clinically diagnosed with PTSD and assigned to a dog-training programme group (n = 30) and a control group (n = 23) that engaged in other training programmes (e.g. cooking, hairstyling, etc.). Both groups were evaluated at baseline and following 12-months by The Clinician-Administered PTSD Scale for DSM-5 in Children and Adolescents (CAPS-CA-5) and Beck-Depression Inventory (BDI). Additionally, we physiologically measured both emotional and attention dysregulation. Results: Post-12-months training, a significant alleviation of PTSD symptomatology accompanied by lower depression severity was observed in the dog-training group, compared with a insignificant recovery in the control group. Furthermore, improved emotional and attentional regulation was observed in the dog-training group. Measuring the dogs' behaviour revealed increased anxiety and decreased selective attention performance, which was inversely correlated with the beneficial effects observed in the dog-training programme group. Conclusions: Our findings emphasize the role of emotional and attentional regulations on the dog-handler interface, as evidence-based support for the beneficial effects of the dog-training programme, as either a non-pharmacological intervention or as complementary to anti-depressants treatment of PTSD. Though pharmacological treatments increase the patients' well-being by treating certain PTSD symptoms, our suggested dog-training programme seems to influence the PTSD diagnostic status, thus may be implemented in civilians and veterans with PTSD.


Antecedentes: Los síntomas de trastorno de estrés postraumático (TEPT) incluyen re-experimentación, evitación, hiperalerta y déficits cognitivos, reflejando desregulación tanto emocional como cognitiva. En los últimos años, se demostró que los enfoques no farmacológicos y específicamente la terapia asistida por animales son beneficiosos para una variedad de trastornos como el Trastorno por Déficit Atencional e Hiperactividad, el Trastorno del Espectro Autista y el TEPT. Sin embargo, poco se menciona en la literatura acerca de los efectos recíprocos de la interacción animal-humano.Objetivo: Evaluar los efectos de un programa de adiestramiento canino de un año en la sintomatología de TEPT en los jóvenes con TEPT y en el comportamiento de los perros.Métodos: Cincuenta y tres adolescentes, previamente expuestos a trauma interpersonal, fueron diagnosticados clínicamente con TEPT y asignados a un grupo de programa de adiestramiento canino (n = 30) y a un grupo control (n = 23) que participaron en otros programas de adiestramiento (ej., cocinar, peluquería, etc). Ambos grupos fueron evaluados al inicio y después de 12 meses mediante la Escala de TEPT administrada por el Clínico del DSM-5 en niños y adolescentes (CAPS-CA-5 por sus siglas en inglés) y el Inventario de Depresión de Beck (BDI). Adicionalmente, medimos fisiológicamente la desregulación emocional y de la atención.Resultados: Después del entrenamiento de 12 meses, se observó un alivio significativo de la sintomatología de TEPT junto con una disminución de la severidad de la depresión en el grupo de adiestramiento canino, comparado con una recuperación insignificante en el grupo control. Además, se observó una mejoría en la regulación emocional y de la atención en el grupo de adiestramiento canino. La medición del comportamiento de los perros reveló un aumento de la ansiedad y disminución del rendimiento de la atención selectiva, que se correlacionó inversamente con los efectos beneficiosos observados en el grupo del programa de adiestramiento canino.Conclusiones: Nuestros hallazgos enfatizan el rol de la regulación emocional y de atención en la interfaz del entrenador de perros, como soporte basado en la evidencia para los efectos beneficiosos del programa de adiestramiento canino, tanto como tratamiento no farmacológico como complementario al tratamiento antidepresivo del TEPT. Aunque los tratamientos farmacológicos fomentan el bienestar de los pacientes al tratar ciertos síntomas del TEPT, nuestro programa de adiestramiento canino sugerido parece influir en el estado diagnóstico de TEPT, por lo que puede implementarse en civiles y veteranos con TEPT.


Assuntos
Terapia Assistida com Animais , Atenção , Comportamento Animal , Regulação Emocional , Interação Humano-Animal , Transtornos de Estresse Pós-Traumáticos/reabilitação , Adolescente , Animais , Atenção/fisiologia , Cães , Regulação Emocional/fisiologia , Feminino , Humanos , Masculino , Avaliação de Resultados em Cuidados de Saúde
2.
Biomacromolecules ; 22(11): 4535-4543, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34609837

RESUMO

We report on the production of a flame-resistant xanthan gum (XG)-based hydrogel formulation, which could be directly applied onto the skin for protection against burning projectiles. The hydrogel cream represents an efficient use of XG and starch, both of which are biodegradable, reusable natural materials and are also GRAS-certified. The flame-retardant agent resorcinol bis(diphenyl phosphate) (RDP) was shown to be nontoxic to cells in vitro when adsorbed directly onto the starch delivery vehicle. Three hydrogel formulations were studied, the pure XG hydrogel, commercial FireIce hydrogel, and RDP-XG/RDP-starch hydrogel. After application of a direct flame for 150 s, the RDP-XG/RDP-starch hydrogel produced a thick char layer, which was easily removed, showing undamaged chicken skin and tissue underneath. In contrast, complete burning of skin and tissue was observed on untreated control samples and those covered with FireIce and pure XG hydrogels. The thermal protective performance test was also performed, where the heat transfer was measured as a function of time for all three hydrogels. The RDP-XG/RDP-starch hydrogel was able to prolong the protection time before obtaining a second-degree burn for 103 s, which is double that for FireIce and triple that for the pure XG hydrogel. The model proposed involves endothermic reactions, producing char and burning "cold", as opposed to simply relying on the adsorbed water in the hydrogel for burn protection.


Assuntos
Retardadores de Chama , Hidrogéis , Compostos de Bifenilo , Fosfatos , Polissacarídeos Bacterianos , Resorcinóis , Amido
3.
New Phytol ; 232(5): 1985-1998, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34541677

RESUMO

Plants reduce transpiration to avoid dehydration during drought episodes by stomatal closure and inhibition of canopy growth. Previous studies have suggested that low gibberellin (GA) activity promotes these 'drought avoidance' responses. Using genome editing, molecular, physiological and hormone analyses, we examined if drought regulates GA metabolism in tomato (Solanum lycopersicum) guard cells and leaves, and studied how this affects water loss. Water deficiency inhibited the expression of the GA biosynthesis genes GA20 oxidase1 (GA20ox1) and GA20ox2 and induced the GA deactivating gene GA2ox7 in guard cells and leaf tissue, resulting in reduced levels of bioactive GAs. These effects were mediated by abscisic acid-dependent and abscisic acid-independent pathways, and by the transcription factor TINY1. The loss of GA2ox7 attenuated stomatal response to water deficiency and during soil dehydration, ga2ox7 plants closed their stomata later, and wilted faster than wild-type (WT) M82 cv. Mutations in GA20ox1 and GA20ox2, had no effect on stomatal closure, but reduced water loss due to the mutants' smaller canopy areas. The results suggested that drought-induced GA deactivation in guard cells, contributes to stomatal closure at the early stages of soil dehydration, whereas inhibition of GA synthesis in leaves suppresses canopy growth and restricts transpiration area.


Assuntos
Solanum lycopersicum , Ácido Abscísico , Secas , Giberelinas , Solanum lycopersicum/genética , Estômatos de Plantas , Água
4.
Nat Plants ; 7(6): 800-813, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34135484

RESUMO

The vegetative-to-floral transition is a dramatic developmental change of the shoot apical meristem, promoted by the systemic florigen signal. However, poor molecular temporal resolution of this dynamic process has precluded characterization of how meristems respond to florigen induction. Here, we develop a technology that allows sensitive transcriptional profiling of individual shoot apical meristems. Computational ordering of hundreds of tomato samples reconstructed the floral transition process at fine temporal resolution and uncovered novel short-lived gene expression programs that are activated before flowering. These programs are annulled only when both florigen and a parallel signalling pathway are eliminated. Functional screening identified genes acting at the onset of pre-flowering programs that are involved in the regulation of meristem morphogenetic changes but dispensable for the timing of floral transition. Induced expression of these short-lived transition-state genes allowed us to determine their genetic hierarchies and to bypass the need for the main flowering pathways. Our findings illuminate how systemic and autonomous pathways are integrated to control a critical developmental switch.


Assuntos
Flores/genética , Perfilação da Expressão Gênica/métodos , Meristema/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Simulação por Computador , Florígeno/metabolismo , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/citologia , Solanum lycopersicum/crescimento & desenvolvimento , Meristema/citologia , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Microscopia Eletrônica de Varredura , Mutação , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas
5.
Behav Processes ; 189: 104420, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33991590

RESUMO

The ability to extract reliable segments from the sensory data-stream is necessary for learning and for creating a reliable representation of the environment. Here we focused on segmentation in visual learning associated with foraging. Fifty-one pigeons (Columba livia) were trained to recognize two food-predicting signals, one presented against fixed background elements and the other against varying backgrounds. The pigeons were divided into two groups: 32 pigeons were trained with short intervals of 3-5 min between sessions and 19 with long intervals of 60 min between sessions. When tested on the signal with a plain background, 24 pigeons trained with the short time intervals preferred the signal presented against a varying background during training and eight preferred the signal presented against a fixed background during training. Nine pigeons trained with the long intervals preferred the signal presented against a varying background during training and ten the signal presented against a fixed background during training. Our findings indicate that pigeons possess an ability to use variation-set structure to segment visual data. To date, the effect of variation-set structure has been demonstrated only in the context of human language acquisition. Our current findings suggest that variation sets structure may be linked to other learning abilities too.


Assuntos
Columbidae , Aprendizagem , Animais , Aprendizagem por Discriminação , Humanos
6.
Cell ; 184(7): 1724-1739.e16, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33667348

RESUMO

Divergence of gene function is a hallmark of evolution, but assessing functional divergence over deep time is not trivial. The few alleles available for cross-species studies often fail to expose the entire functional spectrum of genes, potentially obscuring deeply conserved pleiotropic roles. Here, we explore the functional divergence of WUSCHEL HOMEOBOX9 (WOX9), suggested to have species-specific roles in embryo and inflorescence development. Using a cis-regulatory editing drive system, we generate a comprehensive allelic series in tomato, which revealed hidden pleiotropic roles for WOX9. Analysis of accessible chromatin and conserved cis-regulatory sequences identifies the regions responsible for this pleiotropic activity, the functions of which are conserved in groundcherry, a tomato relative. Mimicking these alleles in Arabidopsis, distantly related to tomato and groundcherry, reveals new inflorescence phenotypes, exposing a deeply conserved pleiotropy. We suggest that targeted cis-regulatory mutations can uncover conserved gene functions and reduce undesirable effects in crop improvement.


Assuntos
Genes de Plantas , Pleiotropia Genética/genética , Proteínas de Homeodomínio/genética , Proteínas de Plantas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Alelos , Arabidopsis/genética , Sistemas CRISPR-Cas/genética , Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas , Inflorescência/genética , Solanum lycopersicum/genética , Mutagênese , Desenvolvimento Vegetal/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Solanaceae/genética , Solanaceae/crescimento & desenvolvimento
7.
Cell ; 182(1): 145-161.e23, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32553272

RESUMO

Structural variants (SVs) underlie important crop improvement and domestication traits. However, resolving the extent, diversity, and quantitative impact of SVs has been challenging. We used long-read nanopore sequencing to capture 238,490 SVs in 100 diverse tomato lines. This panSV genome, along with 14 new reference assemblies, revealed large-scale intermixing of diverse genotypes, as well as thousands of SVs intersecting genes and cis-regulatory regions. Hundreds of SV-gene pairs exhibit subtle and significant expression changes, which could broadly influence quantitative trait variation. By combining quantitative genetics with genome editing, we show how multiple SVs that changed gene dosage and expression levels modified fruit flavor, size, and production. In the last example, higher order epistasis among four SVs affecting three related transcription factors allowed introduction of an important harvesting trait in modern tomato. Our findings highlight the underexplored role of SVs in genotype-to-phenotype relationships and their widespread importance and utility in crop improvement.


Assuntos
Produtos Agrícolas/genética , Regulação da Expressão Gênica de Plantas , Variação Estrutural do Genoma , Solanum lycopersicum/genética , Alelos , Sistema Enzimático do Citocromo P-450/genética , Ecótipo , Epistasia Genética , Frutas/genética , Duplicação Gênica , Genoma de Planta , Genótipo , Endogamia , Anotação de Sequência Molecular , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas/genética
8.
Sci Rep ; 9(1): 17228, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31754122

RESUMO

Aggression in psychiatric wards is a continuing matter of concern for both patients and medical staff. Here we have tested the hypothesis that the frequency of such incidents can be reduced with a new strategy of using trained alert dogs that warn of impending violent outbursts. Dogs were positioned among patients in psychiatric wards. Analyses show that the dogs warned of impending aggressive outbursts, responding to signals from a specific patient out of a group of unfamiliar psychotic patients. Their alerts were not a response to stress as canine cortisol levels were not significantly changed. Visual glance was the preferred method used by young dogs to respond to patient. Until a similar electronic technology is developed, trained alert dogs can help caregivers to protect both the patient and those around them from injuries that may otherwise result from aggressive outbursts in psychiatric patients.


Assuntos
Agressão/psicologia , Transtornos Mentais/psicologia , Violência/psicologia , Adolescente , Animais , Cães , Feminino , Humanos , Masculino , Unidade Hospitalar de Psiquiatria
9.
Science ; 366(6466)2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31488704

RESUMO

The dominance of the major crops that feed humans and their livestock arose from agricultural revolutions that increased productivity and adapted plants to large-scale farming practices. Two hormone systems that universally control flowering and plant architecture, florigen and gibberellin, were the source of multiple revolutions that modified reproductive transitions and proportional growth among plant parts. Although step changes based on serendipitous mutations in these hormone systems laid the foundation, genetic and agronomic tuning were required for broad agricultural benefits. We propose that generating targeted genetic variation in core components of both systems would elicit a wider range of phenotypic variation. Incorporating this enhanced diversity into breeding programs of conventional and underutilized crops could help to meet the future needs of the human diet and promote sustainable agriculture.


Assuntos
Produtos Agrícolas/genética , Florígeno , Giberelinas , Melhoramento Vegetal/métodos , Animais , Flores/genética , Marcação de Genes , Variação Genética , Humanos , Gado , Mutação
10.
Proc Natl Acad Sci U S A ; 116(32): 16127-16136, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31324744

RESUMO

Florigen, a proteinaceous hormone, functions as a universal long-range promoter of flowering and concurrently as a generic growth-attenuating hormone across leaf and stem meristems. In flowering plants, the transition from the vegetative phase to the reproductive phase entails the orchestration of new growth coordinates and a global redistribution of resources, signals, and mechanical loads among organs. However, the ultimate cellular processes governing the adaptation of the shoot system to reproduction remain unknown. We hypothesized that if the mechanism for floral induction is universal, then the cellular metabolic mechanisms underlying the conditioning of the shoot system for reproduction would also be universal and may be best regulated by florigen itself. To understand the cellular basis for the vegetative functions of florigen, we explored the radial expansion of tomato stems. RNA-Seq and complementary genetic and histological studies revealed that florigen of endogenous, mobile, or induced origins accelerates the transcription network navigating secondary cell wall biogenesis as a unit, promoting vascular maturation and thereby adapting the shoot system to the developmental needs of the ensuing reproductive phase it had originally set into motion. We then demonstrated that a remarkably stable and broadly distributed florigen promotes MADS and MIF genes, which in turn regulate the rate of vascular maturation and radial expansion of stems irrespective of flowering or florigen level. The dual acceleration of flowering and vascular maturation by florigen provides a paradigm for coordinated regulation of independent global developmental programs.


Assuntos
Arabidopsis/fisiologia , Parede Celular/metabolismo , Florígeno/farmacologia , Flores/fisiologia , Reguladores de Crescimento de Plantas/farmacologia , Feixe Vascular de Plantas/fisiologia , Solanum lycopersicum/fisiologia , Arabidopsis/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Temperatura Alta , Solanum lycopersicum/efeitos dos fármacos , Fotoperíodo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/efeitos dos fármacos , Caules de Planta/fisiologia , Feixe Vascular de Plantas/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
11.
Cell ; 169(6): 1142-1155.e12, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28528644

RESUMO

Selection for inflorescence architecture with improved flower production and yield is common to many domesticated crops. However, tomato inflorescences resemble wild ancestors, and breeders avoided excessive branching because of low fertility. We found branched variants carry mutations in two related transcription factors that were selected independently. One founder mutation enlarged the leaf-like organs on fruits and was selected as fruit size increased during domestication. The other mutation eliminated the flower abscission zone, providing "jointless" fruit stems that reduced fruit dropping and facilitated mechanical harvesting. Stacking both beneficial traits caused undesirable branching and sterility due to epistasis, which breeders overcame with suppressors. However, this suppression restricted the opportunity for productivity gains from weak branching. Exploiting natural and engineered alleles for multiple family members, we achieved a continuum of inflorescence complexity that allowed breeding of higher-yielding hybrids. Characterizing and neutralizing similar cases of negative epistasis could improve productivity in many agricultural organisms. VIDEO ABSTRACT.


Assuntos
Epistasia Genética , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Sequência de Aminoácidos , Domesticação , Inflorescência/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/fisiologia , Proteínas de Domínio MADS/química , Proteínas de Domínio MADS/metabolismo , Meristema/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Alinhamento de Sequência
12.
Plant Cell ; 29(4): 681-696, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28389586

RESUMO

Enlargement and doming of the shoot apical meristem (SAM) is a hallmark of the transition from vegetative growth to flowering. While this change is widespread, its role in the flowering process is unknown. The late termination (ltm) tomato (Solanum lycopersicum) mutant shows severely delayed flowering and precocious doming of the vegetative SAM LTM encodes a kelch domain-containing protein, with no link to known meristem maintenance or flowering time pathways. LTM interacts with the TOPLESS corepressor and with several transcription factors that can provide specificity for its functions. A subgroup of flowering-associated genes is precociously upregulated in vegetative stages of ltm SAMs, among them, the antiflorigen gene SELF PRUNING (SP). A mutation in SP restored the structure of vegetative SAMs in ltm sp double mutants, and late flowering was partially suppressed, suggesting that LTM functions to suppress SP in the vegetative SAM In agreement, SP-overexpressing wild-type plants exhibited precocious doming of vegetative SAMs combined with late flowering, as found in ltm plants. Strong flowering signals can result in termination of the SAM, usually by its differentiation into a flower. We propose that activation of a floral antagonist that promotes SAM growth in concert with floral transition protects it from such terminating effects.


Assuntos
Flores/citologia , Flores/metabolismo , Repetição Kelch/fisiologia , Meristema/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/citologia , Solanum lycopersicum/metabolismo , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Repetição Kelch/genética , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Meristema/genética , Meristema/fisiologia , Mutação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Proc Natl Acad Sci U S A ; 114(12): 3246-3251, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28270611

RESUMO

Lateral plant organs, particularly leaves, initiate at the flanks of the shoot apical meristem (SAM) following auxin maxima signals; however, little is known about the underlying mechanisms. Here, we show that tomato leafless (lfs) mutants fail to produce cotyledons and leaves and grow a naked pin while maintaining an active SAM. A similar phenotype was observed among pin-like shoots induced by polar auxin transport inhibitors such as 2,3,5-triiodobenzoic acid (TIBA). Both types of pin-like shoots showed reduced expression of primordia markers as well as abnormal auxin distribution, as evidenced by expression of the auxin reporters pPIN1:PIN1:GFP and DR5:YFP Upon auxin microapplication, both lfs meristems and TIBA-pin apices activated DR5:YFP expression with similar kinetics; however, only lfs plants failed to concurrently initiate leaf primordia. We found that LFS encodes the single tomato ortholog of Arabidopsis DORNRONSCHEN (DRN) and DRN-like (DRNL) genes and is transiently expressed at incipient and young primordia, overlapping with auxin response maxima. LFS is rapidly induced by auxin application, implying feed-forward activity between LFS and auxin signals. However, driving LFS at auxin response maxima sites using the DR5 promoter fails to fully rescue lfs plants, suggesting that additional, auxin-independent regulation is needed. Indeed, extended GCC-box elements upstream of LFS drove primordia-specific expression in a LFS-dependent but auxin-independent manner. We thus suggest that LFS transiently acts at the site of primordia initiation, where it provides a specific context to auxin response maxima culminating in leaf primordia initiation.


Assuntos
Ácidos Indolacéticos/metabolismo , Folhas de Planta/metabolismo , Solanum lycopersicum/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Estudos de Associação Genética , Solanum lycopersicum/classificação , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Mutação , Fenótipo , Filogenia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Regiões Promotoras Genéticas , Elementos de Resposta , Transdução de Sinais
14.
Elife ; 52016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27710768

RESUMO

Leaves are flat determinate organs derived from indeterminate shoot apical meristems. The presence of a specific leaf meristem is debated, as anatomical features typical of meristems are not present in leaves. Here we demonstrate that multiple NGATHA (NGA) and CINCINNATA-class-TCP (CIN-TCP) transcription factors act redundantly, shortly after leaf initiation, to gradually restrict the activity of a leaf meristem in Arabidopsis thaliana to marginal and basal domains, and that their absence confers persistent marginal growth to leaves, cotyledons and floral organs. Following primordia initiation, the restriction of the broadly acting leaf meristem to the margins is mediated by the juxtaposition of adaxial and abaxial domains and maintained by WOX homeobox transcription factors, whereas other marginal elaboration genes are dispensable for its maintenance. This genetic framework parallels the morphogenetic program of shoot apical meristems and may represent a relic of an ancestral shoot system from which seed plant leaves evolved.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Meristema/genética , Desenvolvimento Vegetal/genética , Folhas de Planta/genética , Transcriptoma , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Evolução Biológica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
New Phytol ; 212(1): 244-58, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27292411

RESUMO

Domestication of upland cotton (Gossypium hirsutum) converted it from a lanky photoperiodic perennial to a day-neutral annual row-crop. Residual perennial traits, however, complicate irrigation and crop management, and more determinate architectures are desired. Cotton simultaneously maintains robust monopodial indeterminate shoots and sympodial determinate shoots. We questioned if and how the FLOWERING LOCUS T/SINGLE FLOWER TRUSS (SFT)-like and TERMINAL FLOWER1/SELF-PRUNING (SP)-like genes control the balance of monopodial and sympodial growth in a woody perennial with complex growth habit. Virus-based manipulation of GhSP and GhSFT expression enabled unprecedented functional analysis of cotton development. GhSP maintains growth in all apices; in its absence, both monopodial and sympodial branch systems terminate precociously. GhSFT encodes a florigenic signal stimulating rapid onset of sympodial branching and flowering in side shoots of wild photoperiodic and modern day-neutral accessions. High florigen concentrations did not alter monopodial apices, implying that once a cotton apex is SP-determined, it cannot be reset by florigen. GhSP is also essential to establish and maintain cambial activity. Dynamic changes in GhSFT and GhSP levels navigate meristems between monopodial and sympodial programs in a single plant. SFT and SP influenced cotton domestication and are ideal targets for further agricultural optimization.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium/crescimento & desenvolvimento , Gossypium/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/genética , Clonagem Molecular , Domesticação , Ecótipo , Flores/fisiologia , Inativação Gênica , Gossypium/virologia , Família Multigênica , Fotoperíodo , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Caules de Planta/fisiologia
16.
Plant Cell ; 27(6): 1579-94, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26036254

RESUMO

Gibberellin (GA) regulates plant development primarily by triggering the degradation/deactivation of the DELLA proteins. However, it remains unclear whether all GA responses are regulated by DELLAs. Tomato (Solanum lycopersicum) has a single DELLA gene named PROCERA (PRO), and its recessive pro allele exhibits constitutive GA activity but retains responsiveness to external GA. In the loss-of-function mutant pro(ΔGRAS), all examined GA developmental responses were considerably enhanced relative to pro and a defect in seed desiccation tolerance was uncovered. As pro, but not pro(ΔGRAS), elongation was promoted by GA treatment, pro may retain residual DELLA activity. In agreement with homeostatic feedback regulation of the GA biosynthetic pathway, we found that GA20oxidase1 expression was suppressed in pro(ΔGRAS) and was not affected by exogenous GA3. In contrast, expression of GA2oxidase4 was not affected by the elevated GA signaling in pro(ΔGRAS) but was strongly induced by exogenous GA3. Since a similar response was found in Arabidopsis thaliana plants with impaired activity of all five DELLA genes, we suggest that homeostatic GA responses are regulated by both DELLA-dependent and -independent pathways. Transcriptome analysis of GA-treated pro(ΔGRAS) leaves suggests that 5% of all GA-regulated genes in tomato are DELLA independent.


Assuntos
Giberelinas/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Proteínas de Plantas/fisiologia , Solanum lycopersicum/fisiologia , Ácido Abscísico/fisiologia , Retroalimentação Fisiológica , Genes de Plantas/fisiologia , Solanum lycopersicum/genética , Mutação , Reguladores de Crescimento de Plantas/genética , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Transcriptoma
17.
Nat Genet ; 46(12): 1337-42, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25362485

RESUMO

Naturally occurring genetic variation in the universal florigen flowering pathway has produced major advancements in crop domestication. However, variants that can maximize crop yields may not exist in natural populations. Here we show that tomato productivity can be fine-tuned and optimized by exploiting combinations of selected mutations in multiple florigen pathway components. By screening for chemically induced mutations that suppress the bushy, determinate growth habit of field tomatoes, we isolated a new weak allele of the florigen gene SINGLE FLOWER TRUSS (SFT) and two mutations affecting a bZIP transcription factor component of the 'florigen activation complex' (ref. 11). By combining heterozygous mutations, we pinpointed an optimal balance of flowering signals, resulting in a new partially determinate architecture that translated to maximum yields. We propose that harnessing mutations in the florigen pathway to customize plant architecture and flower production offers a broad toolkit to boost crop productivity.


Assuntos
Florígeno/química , Flores/genética , Mutação , Solanum lycopersicum/genética , Alelos , Motivos de Aminoácidos , Mapeamento Cromossômico , Produtos Agrícolas/genética , Genótipo , Heterozigoto , Hibridização In Situ , Meristema/genética , Fenótipo , Folhas de Planta/genética , Proteínas de Plantas/genética , Brotos de Planta , RNA Mensageiro/metabolismo , Transcriptoma , Técnicas do Sistema de Duplo-Híbrido
18.
Front Plant Sci ; 5: 465, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25278944

RESUMO

Genetic studies in Arabidopsis established FLOWERING LOCUS T (FT) as a key flower-promoting gene in photoperiodic systems. Grafting experiments established unequivocal one-to-one relations between SINGLE FLOWER TRUSS (SFT), a tomato homolog of FT, and the hypothetical florigen, in all flowering plants. Additional studies of SFT and SELF PRUNING (SP, homolog of TFL1), two antagonistic genes regulating the architecture of the sympodial shoot system, have suggested that transition to flowering in the day-neutral and perennial tomato is synonymous with "termination." Dosage manipulation of its endogenous and mobile, graft-transmissible levels demonstrated that florigen regulates termination and transition to flowering in an SP-dependent manner and, by the same token, that high florigen levels induce growth arrest and termination in meristems across the tomato shoot system. It was thus proposed that growth balances, and consequently the patterning of the shoot systems in all plants, are mediated by endogenous, meristem-specific dynamic SFT/SP ratios and that shifts to termination by changing SFT/SP ratios are triggered by the imported florigen, the mobile form of SFT. Florigen is a universal plant growth hormone inherently checked by a complementary antagonistic systemic system. Thus, an examination of the endogenous functions of FT-like genes, or of the systemic roles of the mobile florigen in any plant species, that fails to pay careful attention to the balancing antagonistic systems, or to consider its functions in day-neutral or perennial plants, would be incomplete.

19.
Curr Opin Plant Biol ; 17: 70-7, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24507497

RESUMO

Plant apical meristems (AMs) grow continuously by delicately balancing cells leaving at the periphery to form lateral organs with slowly dividing central domain cells that replenish reservoirs of pluripotent cells. This balance can be modified by signals originating from within and outside the meristem, and their integration results in a gradual maturation process that often culminates with the meristem differentiating into a flower. Accompanying this 'meristem maturation' are changes in spacing and size of lateral organs and in rates at which lateral meristems are released from apical dominance. Modulation of distinct meristem maturation parameters through environmental and genetic changes underlies the remarkable diversity of shoot architectures. Here, we discuss recent studies relating the dynamics of meristem maturation with organization of floral branching systems--inflorescences--in the nightshades. From this context, we suggest general principles on how factors coordinating meristem maturation impact shoot organization more broadly.


Assuntos
Inflorescência/crescimento & desenvolvimento , Meristema/crescimento & desenvolvimento , Morfogênese , Solanaceae/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Inflorescência/genética , Inflorescência/metabolismo , Meristema/genética , Meristema/metabolismo , Modelos Biológicos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais , Solanaceae/genética , Solanaceae/metabolismo
20.
Curr Biol ; 23(12): 1057-64, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23746638

RESUMO

BACKGROUND: Dedicated storage organs in the form of tubers are evolutionary novelties that share a common function but originate in diverse species from different organs. Tubers in potato, Solanum tuberosum, are derived from the swollen tips of specialized basal lateral juvenile shoots, called stolons. Lateral buds of tomato, Solanum lycopersicum, a potato sibling species, only form regular shoots. The evo-devo mechanisms restricting tuber formation to basal juvenile axillary meristems of potato while completely inhibiting it in tomato meristems are not currently understood. RESULTS: Ectopic expression of tomato LONELY GUY (LOG1), a cytokinin (CK) biosynthesis gene, imparts potential to the outgrowing juvenile tomato buds to generate, de novo, aerial minitubers (TMTs). TMTs are morphologically, developmentally, and metabolically homologous to aerial potato tubers and display a unique transcriptome with altered hormonal signaling networks. The new hormonal balance stimulates ectopic branching of dormant axillary meristems and loss of apical dominance without disruption of polar auxin transport and obviates the need for specific branching genes. miR156, a master regulator of juvenility, extends tuber-forming potential to distal axillary buds in both wild-type potato and tomato primed by LOG1 signaling. CONCLUSIONS: Ubiquitous activation of TLOG1 uncovered a developmentally suppressed tuber-forming potential within tomato axillary meristems. Other meristems in other plants may also carry hidden, suppressed organogenesis potentials. The unlocking of this potential by the activity of a single gene represents a prime example of an evolutionary novelty in the making and suggests that CKs may function as universal regulators of storage-organ formation in plants.


Assuntos
Citocininas/metabolismo , Tubérculos/crescimento & desenvolvimento , Solanum lycopersicum/crescimento & desenvolvimento , Sequência de Bases , Citocininas/genética , Ativadores de Enzimas/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Meristema/genética , Meristema/metabolismo , MicroRNAs/metabolismo , Tubérculos/enzimologia , Tubérculos/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...