Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-30191083

RESUMO

Background: Metabolic imaging has revealed excessive cerebellar activity in essential tremor patients. Golgi cells control cerebellar activity by releasing gamma-aminobutyric acid (GABA) onto synaptic and extrasynaptic receptors on cerebellar granule cells. We postulated that the extrasynaptic GABAA receptor-specific agonist THIP (gaboxadol; 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) would suppress tremor in the harmaline model of essential tremor and, since cerebellar extrasynaptic receptors contain α6 and δ subunits, would fail to do so in mice lacking either subunit. Methods: Digitally measured motion power, expressed as 10-16 Hz power (the tremor bandwidth) divided by background 8-32 Hz motion power, was accessed during pre-harmaline baseline, pre-THIP harmaline exposure, and after THIP administration (0, 2, or 3 mg/kg). These low doses were chosen as they did not impair performance on the straight wire test, a sensitive test for psychomotor impairment. Littermate δ wild-type and knockout (Gabrd+/+, Gabrd-/-) and littermate α6 wild-type and knockout (Gabra6+/+, Gabra6-/- ) mice were tested. Results: Gabrd+/+ mice displayed tremor reduction at 3 mg/kg THIP but not 2 mg/kg, and Gabra6+/+ mice showed tremor reduction at 2 and 3 mg/kg. Their respective subunit knockout littermates displayed no tremor reduction compared with vehicle controls at either dose. Discussion: The loss of anti-tremor efficacy with deletion of either δ or α6 GABAA receptor subunits indicates that extrasynaptic receptors containing both subunits, most likely located on cerebellar granule cells where they are highly expressed, mediate tremor suppression by THIP. A medication designed to activate only these receptors may display a favorable profile for treating essential tremor.


Assuntos
Agonistas de Receptores de GABA-A/farmacologia , Isoxazóis/farmacologia , Receptores de GABA-A/metabolismo , Tremor/tratamento farmacológico , Tremor/metabolismo , Animais , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Tremor Essencial/metabolismo , Feminino , Harmalina , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de GABA-A/genética
2.
J Neurotrauma ; 33(16): 1501-13, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-26530250

RESUMO

Diffuse axonal injury is recognized as a progressive and long-term consequence of traumatic brain injury. Axonal injury can have sustained negative consequences on neuronal functions such as anterograde and retrograde transport and cellular processes such as autophagy that depend on cytoarchitecture and axon integrity. These changes can lead to somatic atrophy and an inability to repair and promote plasticity. Obstruction of the autophagic process has been noted after brain injury, and rapamycin, a drug used to stimulate autophagy, has demonstrated positive effects in brain injury models. The optimization of drugs to promote beneficial autophagy without negative side effects could be used to attenuate traumatic brain injury and promote improved outcome. Lanthionine ketimine ethyl ester, a bioavailable derivative of a natural sulfur amino acid metabolite, has demonstrated effects on autophagy both in vitro and in vivo. Thirty minutes after a moderate central fluid percussion injury and throughout the survival period, lanthionine ketimine ethyl ester was administered, and mice were subsequently evaluated for learning and memory impairments and biochemical and histological changes over a 5-week period. Lanthionine ketimine ethyl ester, which we have shown previously to modulate autophagy markers and alleviate pathology and slow cognitive decline in the 3 × TgAD mouse model, spared cognition and pathology after central fluid percussion injury through a mechanism involving autophagy modulation.


Assuntos
Aminoácidos Sulfúricos/farmacologia , Autofagia/efeitos dos fármacos , Lesão Axonal Difusa/tratamento farmacológico , Aminoácidos Sulfúricos/administração & dosagem , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL
3.
PLoS One ; 10(10): e0137305, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26436670

RESUMO

Cytokines such as TNFα can polarize microglia/macrophages into different neuroinflammatory types. Skewing of the phenotype towards a cytotoxic state is thought to impair phagocytosis and has been described in Alzheimer's Disease (AD). Neuroinflammation can be perpetuated by a cycle of increasing cytokine production and maintenance of a polarized activation state that contributes to AD progression. In this study, 3xTgAD mice, age 6 months, were treated orally with 3 doses of the TNFα modulating compound isoindolin-1,3 dithione (IDT) for 10 months. We demonstrate that IDT is a TNFα modulating compound both in vitro and in vivo. Following long-term IDT administration, mice were assessed for learning & memory and tissue and serum were collected for analysis. Results demonstrate that IDT is safe for long-term treatment and significantly improves learning and memory in the 3xTgAD mouse model. IDT significantly reduced paired helical filament tau and fibrillar amyloid accumulation. Flow cytometry of brain cell populations revealed that IDT increased the infiltrating neutrophil population while reducing TNFα expression in this population. IDT is a safe and effective TNFα and innate immune system modulator. Thus small molecule, orally bioavailable modulators are promising therapeutics for Alzheimer's disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Cognição/classificação , Isoindóis/administração & dosagem , Isoindóis/farmacologia , Infiltração de Neutrófilos/efeitos dos fármacos , Tioamidas/administração & dosagem , Tioamidas/farmacologia , Tionas/administração & dosagem , Tionas/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Proteínas tau/química , Administração Oral , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Disponibilidade Biológica , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Humanos , Imunidade Inata/efeitos dos fármacos , Isoindóis/efeitos adversos , Isoindóis/uso terapêutico , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fenótipo , Multimerização Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína/efeitos dos fármacos , Segurança , Solubilidade , Tioamidas/efeitos adversos , Tioamidas/uso terapêutico , Tionas/efeitos adversos , Tionas/uso terapêutico , Fator de Necrose Tumoral alfa/antagonistas & inibidores
4.
Neurobiol Dis ; 84: 60-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25779968

RESUMO

Autophagy is a fundamental cellular recycling process vulnerable to compromise in neurodegeneration. We now report that a cell-penetrating neurotrophic and neuroprotective derivative of the central nervous system (CNS) metabolite, lanthionine ketimine (LK), stimulates autophagy in RG2 glioma and SH-SY5Y neuroblastoma cells at concentrations within or below pharmacological levels reported in previous mouse studies. Autophagy stimulation was evidenced by increased lipidation of microtubule-associated protein 1 light chain 3 (LC3) both in the absence and presence of bafilomycin-A1 which discriminates between effects on autophagic flux versus blockage of autophagy clearance. LKE treatment caused changes in protein level or phosphorylation state of multiple autophagy pathway proteins including mTOR; p70S6 kinase; unc-51-like-kinase-1 (ULK1); beclin-1 and LC3 in a manner essentially identical to effects observed after rapamycin treatment. The LKE site of action was near mTOR because neither LKE nor the mTOR inhibitor rapamycin affected tuberous sclerosis complex (TSC) phosphorylation status upstream from mTOR. Confocal immunofluorescence imaging revealed that LKE specifically decreased mTOR (but not TSC2) colocalization with LAMP2(+) lysosomes in RG2 cells, a necessary event for mTORC1-mediated autophagy suppression, whereas rapamycin had no effect. Suppression of the LK-binding adaptor protein CRMP2 (collapsin response mediator protein-2) by means of shRNA resulted in diminished autophagy flux, suggesting that the LKE action on mTOR localization may occur through a novel mechanism involving CRMP2-mediated intracellular trafficking. These findings clarify the mechanism-of-action for LKE in preclinical models of CNS disease, while suggesting possible roles for natural lanthionine metabolites in regulating CNS autophagy.


Assuntos
Aminoácidos Sulfúricos/farmacologia , Autofagia/efeitos dos fármacos , Complexos Multiproteicos/metabolismo , Fármacos Neuroprotetores/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Aminoácidos Sulfúricos/química , Animais , Autofagia/fisiologia , Linhagem Celular Tumoral , Humanos , Imunossupressores/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Ratos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/metabolismo
5.
J Neuropathol Exp Neurol ; 72(10): 955-69, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24042198

RESUMO

Lanthionine ketimine ([LK] 3,4-dihydro-2H-1,4-thiazine-3,5-dicarboxylic acid) is the archetype for a family of naturally occurring brain sulfur amino acid metabolites, the physiologic function of which is unknown. Lanthionine ketimine and its synthetic derivatives have recently demonstrated neurotrophic, neuroprotective, and antineuroinflammatory properties in vitro through a proposed mechanism involving the microtubule-associated protein collapsin response mediator protein 2. Therefore, studies were undertaken to test the effects of a bioavailable LK ester in the 3 × Tg-AD mouse model of Alzheimer disease. Lanthionine ketimine ester treatment substantially diminished cognitive decline and brain amyloid-ß (Aß) peptide deposition and phospho-Tau accumulation in 3 × Tg-AD mice and also reduced the density of Iba1-positive microglia. Furthermore, LK ester treatment altered collapsin response mediator protein 2 phosphorylation. These findings suggest that LK may not be a metabolic waste but rather a purposeful neurochemical, the synthetic derivatives of which constitute a new class of experimental therapeutics for Alzheimer disease and related entities.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Aminoácidos Sulfúricos/uso terapêutico , Encéfalo/efeitos dos fármacos , Cognição/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Aminoácidos Sulfúricos/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Comportamento de Nidação/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fosforilação/efeitos dos fármacos
6.
J Neuroinflammation ; 9: 99, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22632257

RESUMO

BACKGROUND: Chronic neuroinflammation is an important component of Alzheimer's disease and could contribute to neuronal dysfunction, injury and loss that lead to disease progression. Multiple clinical studies implicate tumor necrosis factor-α as an inflammatory mediator of neurodegeneration in patients with Alzheimer's because of elevated levels of this cytokine in the cerebrospinal fluid, hippocampus and cortex. Current Alzheimer's disease interventions are symptomatic treatments with limited efficacy that do not address etiology. Thus, a critical need exists for novel treatments directed towards modifying the pathophysiology and progression. METHODS: To investigate the effect of early immune modulation on neuroinflammation and cognitive outcome, we treated triple transgenic Alzheimer's disease mice (harboring PS1(M146V), APP(Swe), and tau(P301L) transgenes) with the small molecule tumor necrosis factor-α inhibitors, 3,6'-dithiothalidomide and thalidomide, beginning at four months of age. At this young age, mice do not exhibit plaque or tau pathology but do show mild intraneuronal amyloid beta protein staining and a robust increase in tumor necrosis factor-α. After 10 weeks of treatment, cognitive performance was assessed using radial arm maze and neuroinflammation was assessed using biochemical, stereological and flow cytometric endpoints. RESULTS: 3,6'-dithiothalidomide reduced tumor necrosis factor-α mRNA and protein levels in the brain and improved working memory performance and the ratio of resting to reactive microglia in the hippocampus of triple transgenic mice. In comparison to non-transgenic controls, triple transgenic Alzheimer's disease mice had increased total numbers of infiltrating peripheral monomyelocytic/granulocytic leukocytes with enhanced intracytoplasmic tumor necrosis factor-α, which was reduced after treatment with 3,6'-dithiothalidomide. CONCLUSIONS: These results suggest that modulation of tumor necrosis factor-α with small molecule inhibitors is safe and effective with potential for the long-term prevention and treatment of Alzheimer's disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Transtornos Cognitivos/prevenção & controle , Modelos Animais de Doenças , Fármacos Neuroprotetores/uso terapêutico , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Células Cultivadas , Transtornos Cognitivos/genética , Transtornos Cognitivos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fármacos Neuroprotetores/farmacologia , Talidomida/análogos & derivados , Talidomida/farmacologia , Talidomida/uso terapêutico , Fatores de Tempo , Fator de Necrose Tumoral alfa/biossíntese
7.
Brain Res ; 1241: 176-87, 2008 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-18804458

RESUMO

Numerous studies suggest a central role for the low-density lipoprotein receptor-related protein/transforming growth factor beta receptor V in Alzheimer's Disease. We continue our investigation of a ligand for this receptor, transforming growth factor beta2, which is also implicated in Alzheimer Disease pathogenesis, but whose mechanism(s) remain elusive. Confocal imaging reveals that transforming growth factor beta2 rapidly targets amyloid beta peptide to the lysosomal compartment in cortical neurons and induces cell death. Low-density lipoprotein receptor-related protein/transforming growth factor beta receptor V is known as an endocytic receptor, delivering proteins to the lysosomal compartment for degradation. Transforming growth factor beta2 may alter this pathway resulting in increased uptake, intracellular accumulation and toxicity of amyloid beta peptide. RT-PCR and Western blot analysis of transforming growth factor beta2-treated cells demonstrate that transforming growth factor beta2 modestly increases the mRNA and protein levels of low-density lipoprotein receptor-related protein/transforming growth factor beta receptor V as well as increases the uptake activity. Furthermore, transforming growth factor beta2 alters the morphology and numbers of lysosomes in neurons. Lucifer Yellow and lysosomal hydrolase analysis show that transforming growth factor beta2 makes lysosomal membranes unstable and leaky and this effect is exacerbated with the addition of amyloid beta protein. Our data support a key role for low-density lipoprotein receptor-related protein/transforming growth factor beta receptor V in mediating transforming growth factor beta2 enhancement of amyloid beta peptide uptake and neurotoxicity.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Lisossomos/metabolismo , Neurônios/metabolismo , Receptores de LDL/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Peptídeos beta-Amiloides/toxicidade , Animais , Células Cultivadas , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/patologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Lisossomos/efeitos dos fármacos , Lisossomos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/patologia , Células PC12 , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Receptores de LDL/efeitos dos fármacos , Receptores de LDL/genética , Receptores de Fatores de Crescimento Transformadores beta/agonistas , Fator de Crescimento Transformador beta2/farmacologia , Proteínas Supressoras de Tumor/efeitos dos fármacos , Proteínas Supressoras de Tumor/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
8.
J Hypertens ; 26(2): 269-75, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18192841

RESUMO

BACKGROUND: Plasma uric acid has been associated with hypertension in a variety of disorders, and has been shown to be predictive of hypertension. The mechanistic role of uric acid in the development of hypertension is not known however. METHOD: We tested the hypothesis that uric acid stimulates vascular smooth muscle cell (VSMC) proliferation and oxidative stress by stimulating the vascular renin-angiotensin system (RAS). Rat VSMC were exposed to 0-300 micromol uric acid for 48 h. RESULTS: Uric acid (200 and 300 micromol) stimulated the proliferation of VSMC as measured by thymidine uptake. This effect was prevented by 10(-6) mol losartan or by 10(-6) mol captopril. Incubation of VSMC with uric acid for 48 h also increased angiotensinogen messenger RNA expression and intracellular concentrations of angiotensin II. These responses were also inhibited by losartan and captopril. Increased expression of angiotensinogen mRNA was also inhibited by co-incubation with PD 98059, a mitogen-activated protein (MAP) kinase inhibitor. Uric acid stimulated the production of hydrogen peroxide and 8-isoprostane in VSMC. These increases in oxidative stress indicators were significantly reduced by co-incubating the cells with captopril or losartan. Uric acid also decreased nitrite and nitrate concentrations in the culture medium, an effect that was prevented by losartan and captopril. CONCLUSION: These results demonstrate that uric acid stimulates proliferation, angiotensin II production, and oxidative stress in VSMC through tissue RAS. This suggests that uric acid causes cardiovascular disorders by stimulating the vascular RAS, and this stimulation may be mediated by the MAP kinase pathway.


Assuntos
Proliferação de Células , Células Musculares/fisiologia , Músculo Liso Vascular/crescimento & desenvolvimento , Estresse Oxidativo/fisiologia , Sistema Renina-Angiotensina/fisiologia , Ácido Úrico/metabolismo , Angiotensina II/metabolismo , Animais , Aorta/citologia , Aorta/crescimento & desenvolvimento , Técnicas de Cultura de Células , Perfilação da Expressão Gênica , Masculino , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Músculo Liso Vascular/citologia , Ratos , Ratos Sprague-Dawley
9.
Hypertens Res ; 30(5): 451-7, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17587757

RESUMO

This study determined whether or not oxidative stress and vascular dysfunction in fructose-induced hyperinsulinemic rats are associated with activation of the vascular renin-angiotensin system (RAS). Four groups of rats were used. CONT rats were fed normal rat chow, CONT+CAP were fed normal rat chow and given 500 mg/L captopril in their drinking water, fructose-fed rats (FFR) were fed a high-fructose diet and FFR+CAP were fed the high-fructose diet plus captopril in water. After 8 weeks, the vascular reactivity of mesenteric artery segments was measured. Blood was analyzed for insulin, glucose, hydrogen peroxide and 8-isoprostane. Aortic and heart tissue were used for subjected to quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis. Systolic blood pressure was significantly higher in FFR (p<0.05), and captopril treatment inhibited the blood pressure increase. Mesenteric artery dose-response curves to acetylcholine were shifted to the right in FFR (p<0.05) and were normal in FFR+CAP. Plasma insulin (p<0.05), hydrogen peroxide (p<0.02) and 8-isoprostane (p<0.05) were increased in FFR. Captopril treatment reducd hydrogen peroxide and 8-isoprostane concentrations. Aortic tissue mRNA expression levels were increased for angiotensin-converting enzyme (ACE, p<0.05), angiotensin type 1 receptor (AT1R, p<0.02), NOX4 (p<0.02) and VCAM-1 (p<0.05) in FFR aortic samples. Captopril treatment reduced AT1R, NOX4 and VCAM-1 expression in FFR to levels not different from CONT. Similar changes in heart tissue mRNA expression for angiotensinogen, AT1R and NOX4 were also observed. These results demonstrate that vascular RAS is upregulated in FFR and support the hypothesis that vascular RAS mediates vascular dysfunction and vascular oxidative stress in FFR.


Assuntos
Frutose/farmacologia , Hipertensão/imunologia , Hipertensão/metabolismo , Estresse Oxidativo/fisiologia , Receptor Tipo 1 de Angiotensina/genética , Vasculite , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Aorta/fisiologia , Captopril/farmacologia , Coração/fisiologia , Insulina/sangue , Resistência à Insulina/imunologia , Masculino , Artérias Mesentéricas/fisiologia , NADPH Oxidase 4 , NADPH Oxidases/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos , Receptor Tipo 1 de Angiotensina/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Sistema Renina-Angiotensina/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Molécula 1 de Adesão de Célula Vascular/genética , Vasculite/imunologia , Vasculite/metabolismo , Vasculite/fisiopatologia
10.
Am J Hypertens ; 18(2 Pt 1): 213-9, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15752949

RESUMO

BACKGROUND: Fish oil has been shown to improve blood pressure (BP) in some disease states by an unknown mechanism. We tested the ability of fish oil to prevent vascular dysfunction in fructose-fed rats, a model of insulin resistance and hypertension. METHODS: Rats were placed on three diets: 1) regular rat diet (control); 2) diet containing 60% fructose (FFR); or 3) diet containing 60% fructose and 4.4% fish oil (FFR+FO). After 8 weeks, blood, heart, aorta, and mesenteric artery tissue were collected from each animal. Secondary branch segments of mesenteric arteries were isolated for vascular reactivity studies. RESULTS: Systolic BP increased significantly in the FFR but was reduced to control levels by the addition of fish oil to the diet. In the mesenteric artery segments from FFR, the dose-response curves to acetylcholine were significantly shifted to the right compared with those of control rats and rats on the fish oil diet. Expression of endothelial nitric oxide synthase (eNOS) protein and mRNA was reduced in the FFR aortas and hearts, and this reduction was reversed by the fish oil. Dietary fish oil prevented the hyperlipidemia that occurred in the FFR but did not prevent hyperinsulinemia. Plasma concentrations of hydrogen peroxide, 8-isoprostane, and monocyte chemoattractant protein-1 were significantly elevated in the FFR and were significantly lower in the FFR treated with fish oil. CONCLUSIONS: These results demonstrate that dietary fish oil prevents vascular dysfunction in FFR and that this effect of fish oil is associated with increased eNOS expression and decreased oxidative stress.


Assuntos
Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/fisiopatologia , Gorduras Insaturadas na Dieta/farmacologia , Óleos de Peixe/farmacologia , Hiperinsulinismo/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Acetilcolina/farmacologia , Animais , Aorta/enzimologia , Frutose/administração & dosagem , Hiperinsulinismo/sangue , Hipertensão/induzido quimicamente , Técnicas In Vitro , Masculino , Miocárdio/enzimologia , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo III , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos
11.
J Hypertens ; 22(9): 1779-85, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15311107

RESUMO

OBJECTIVE: The present study was designed to determine the effects of insulin on cytosolic angiotensin II production and proliferation in cultured rat vascular smooth muscle cells. DESIGN AND METHODS: Vascular smooth muscle cells were incubated with insulin for 48 h. Cytosolic angiotensin I and II were determined by radioimmunoassays of purified cell homogenates. Angiotensin II was also detected by immunohistochemistry of intact cells. Cell proliferation was determined by pulse labeling with radiolabeled thymidine. Angiotensinogen mRNA expression was determined by slot-blot analysis. RESULTS: Insulin significantly increased cytosolic angiotensin II concentration in vascular smooth muscle cells. Lisinopril, omapatrilat and irbesartan inhibited this increase of angiotensin II, but had no effect on angiotensin I levels. Immunohistochemical staining confirmed the presence of angiotensin II in control and insulin-treated vascular smooth muscle cells. Insulin increased cell proliferation, and addition of lisinopril, omapatrilat or irbesartan inhibited this effect. Insulin also increased expression of angiotensinogen mRNA in cultured vascular smooth muscle cells, but PD98059, a mitogen-activated protein kinase inhibitor, prevented the rise in angiotensinogen expression. CONCLUSION: These results support the concept that insulin stimulates angiotensin II production in cultured vascular smooth muscle cells through a mitogen-activated, protein kinase-dependent pathway that might be a factor in the progression of atherosclerosis. Agents that block the renin-angiotensin system have direct protective effects, reducing vascular angiotensin II and growth of vascular smooth muscle cells and are thus of cardiovascular benefit.


Assuntos
Angiotensina II/metabolismo , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Angiotensina I/metabolismo , Angiotensinogênio/genética , Animais , Aorta/citologia , Divisão Celular/efeitos dos fármacos , Células Cultivadas , Citosol/metabolismo , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Imuno-Histoquímica , Masculino , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
12.
Curr Hypertens Rep ; 5(3): 269-72, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12724061

RESUMO

Several previous studies confirmed that obesity is a major risk factor for the development of cardiovascular diseases, including hypertension. A large number of clinical studies considered the role of the sympathetic nervous system in linking obesity with hypertension, and there is substantial evidence that human obesity is characterized by defects in sympathetic cardiovascular control. The association of obesity with hypertension has been well documented in most racial, ethnic, and socioeconomic groups. Ethnicity may be an important factor to consider since sympathetic nervous system activity, and the propensity for obesity and hypertension, all differ substantially among different populations. Obesity is actually accompanied by increased sympathetic nerve discharge to skeletal muscles, a main site for energy expenditure. Adiposity-related sympathetic overactivity is a compensatory mechanism to burn fat and decrease weight gain, but at the cost of increased sympathetic discharge to the peripheral vasculature, which could predispose to hypertension. Thus, sympathetic nervous system activity is important in the development and maintenance of obesity-related hypertension in different racial and ethnic populations, including white and black Americans.


Assuntos
População Negra , Hipertensão/etnologia , Hipertensão/fisiopatologia , Obesidade/fisiopatologia , Sistema Nervoso Simpático/fisiopatologia , População Branca , Comorbidade , Metabolismo Energético , Humanos , Hipertensão/epidemiologia , Leptina/fisiologia , Músculo Esquelético/fisiologia , Obesidade/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA