Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 37(8): 2596-2606, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33586976

RESUMO

Motivated by recent advances in the development of thin-film perovskite solar cells, the evaporation and deposition of a perovskite thin liquid film on a hydrophilic substrate, also in some cases subjected to ultrasonic vibrations, are studied in this paper. In practice, in the literature, the complexity of the underlying phenomenon has led to the study of a thick (macroscale) liquid film in the absence of solidification. Here, we investigate evaporation mechanics of a thin (microscale) liquid film of perovskite solution. We demonstrate flow fields within the film and study the reason behind the formation of such flow patterns within a thin liquid film and attribute such flows to surface-tension-induced Marangoni flows and rule out the possibility of the presence of buoyancy-induced Rayleigh-Benard convection. We show that perovskite deposition starts at the film contact lines and propagates toward the film center, creating two regions of the perovskite film with distinct characteristics. Our thermography results (temperature mapping) of the film surface show agreement between the temperature map and the flow patterns on the film surface. Moreover, we show that imposing ultrasonic vibration on an evaporating liquid film results in a more uniformly distributed flow pattern across the film due to micromixing enhancement achieved by ultrasonic vibrations.

2.
Rev Sci Instrum ; 91(3): 033902, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32260015

RESUMO

We report the development of a coating device (multiple-droplet drop-casting), which releases multiple droplets simultaneously or with a short time-lag (<10 ms) using a multi-channel syringe pump to achieve deposition of large-area (up to ∼100 cm2) and patterned coatings. The device exhibits the following features and characteristics: simple, low-cost, and scalable; adaptive to various solution-processed materials; insensitive to small contaminations/impurities; minimizes material waste; and can create patterns (printing). The demonstration of the device performance was carried out by fabricating coatings using four strategic model solutions, namely, carbon nanotube ink, graphene oxide ink, [poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)] PEDOT:PSS solution, and n-methyl-2-pyrrolidone diluted methylammonium lead iodide (CH3NH3PbI3)-based light harvesting perovskite. We investigated the effect of release height (droplet velocity or Weber number) and the film area on the film characteristics. The results show that the device yields reproducible and uniform films on the order of micrometers in thickness and ∼1 µm in roughness.

3.
ACS Omega ; 5(1): 808-821, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31956832

RESUMO

A key step of inexpensive and scalable perovskite thin-film formation is defect-free fabrication through low-cost and facile post-treatment processes. Methods using high annealing temperatures are not favorable for the scale-up of solution-processed thin-film solar cells, particularly on plastic/flexible substrates. This contribution analyzes the effect of ultrasonic vibrations, a recently developed low-cost post-treatment process, on thin-film quality. Ultrasonic vibrations were applied to as-spun CH3NH3PbI3 perovskite thin films prepared with various solvents and antisolvents deposited on substrates with compact and mesoporous textures. Then, mechanisms of solvent evaporation, nucleation, and crystallization of perovskite grains were characterized during ultrasonic vibration. These studies demonstrate that ultrasonic vibration at low temperature facilitates heterogeneous crystallization of perovskite grains with a higher conversion of nuclei into crystal, compared with the conventional annealing process. Topographic scanning electron microscopy images confirm the dense and fully covered thin films after the evaporation of solvent. Furthermore, it is shown that crystal orientation does not change with the choice of solvent, eliminating the effect of solvent on the deposition of thin-film perovskites with this method. Therefore, this ultrasonic vibration post-treatment method is applicable to any solution-processed material and deposition technique, and it can be used to fabricate a range of thin-film devices and printed electronics.

4.
Eur Phys J E Soft Matter ; 42(9): 125, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31512063

RESUMO

In this paper, we experimentally studied the response frequency of oscillations of a sessile water droplet, subjected to horizontal vibrations at varying excitation frequency (5-250 Hz and 40 kHz) and amplitude (0.015 mm to 0.5 mm for low frequencies and 600nm for ultrasonic frequency), as well as static contact angle of the glass substrate ([Formula: see text], [Formula: see text] , [Formula: see text], [Formula: see text]). The droplets were pinned during the experiments and non-axisymmetric oscillation modes were excited due to the horizontal vibrations. For the first time, we observed that at a sufficiently high vibration amplitude, when the excitation frequency is lower than the smallest natural frequency of the sessile droplet, the droplet oscillates at a response frequency multiple of the excitation frequency. At higher excitation frequencies up to several hundreds of Hz, the droplet oscillates nearly at the excitation frequency. At ultrasonic excitation frequency, however, the droplet cannot follow the excitations, since there is a physical limitation for forming infinite modes (infinite wavenumber) on the surface of a small droplet. We have modeled these behaviors with a nonlinear mass-spring-damper system by combining two established models: the Duffing and Van der Pol equations, in order to simulate both nonlinear damping and stiffness.

5.
Nanoscale ; 10(18): 8526-8535, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29694485

RESUMO

Perovskite solar cells (PSCs) have gained great interest, owing to a fast increase in their power conversion efficiency (PCE), within a few years. However, their wide application and scale-up are hampered due to multiple obstacles, such as chemical instability, which leads to a short lifetime, and their complicated reaction and crystallization, which requires thermal annealing. Here, we address these issues using the ultrasonic substrate vibration post treatment (SVPT) applied on the as-spun perovskite wet films, so as to achieve a uniform, microscale and stable mixed-halide and mixed-cation perovskite layer, (FAPbI3)0.85(MAPbBr3)0.15, without the need for a conventional thermal annealing step. This is achieved by the creation of fluid micromixing and in situ annealing within the solution, caused by the ultrasonic excitation of the wet film. The optoelectronic properties of the perovskite films subjected to the SVPT, including photoemission, carrier lifetime and band gap, are remarkably improved compared to the conventionally annealed films. When incorporated into a planar PSC, a maximum PCE of 18.55% was achieved, compared to 15.17% for the control device, with high reproducibility and no hysteresis, and the device retained 80% of its initial PCE, over a period of 20 days of storage under ambient conditions.

6.
Nanoscale Res Lett ; 13(1): 6, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29318465

RESUMO

In this "nano idea" paper, three concepts for the preparation of methylammonium lead halide perovskite particles are proposed, discussed, and tested. The first idea is based on the wet chemistry preparation of the perovskite particles, through the addition of the perovskite precursor solution to an anti-solvent to facilitate the precipitation of the perovskite particles in the solution. The second idea is based on the milling of a blend of the perovskite precursors in the dry form, in order to allow for the conversion of the precursors to the perovskite particles. The third idea is based on the atomization of the perovskite solution by a spray nozzle, introducing the spray droplets into a hot wall reactor, so as to prepare perovskite particles, using the droplet-to-particle spray approach (spray pyrolysis). Preliminary results show that the spray technology is the most successful method for the preparation of impurity-free perovskite particles and perovskite paste to deposit perovskite thin films. As a proof of concept, a perovskite solar cell with the paste prepared by the sprayed perovskite powder was successfully fabricated.

7.
ChemSusChem ; 10(19): 3794-3803, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28881441

RESUMO

Entirely low-temperature solution-processed (≤100 °C) planar p-i-n perovskite solar cells (PSCs) offer great potential for commercialization of roll-to-roll fabricated photovoltaic devices. However, the stable inorganic hole-transporting layer (HTL) in PSCs is usually processed at high temperature (200-500 °C), which is far beyond the tolerant temperature (≤150 °C) of roll-to-roll fabrication. In this context, inorganic NiOx nanoparticles (NPs) are an excellent candidate to serve as the HTL in PSCs, owing to their excellent solution processability at room temperature. However, the low-temperature processing condition is usually accompanied with defect formation, which deteriorates the film quality and device efficiency to a large extent. To suppress this setback, we used a series of benzoic acid selfassembled monolayers (SAMs) to passivate the surface defects of the NiOx NPs and found that 4-bromobenzoic acid could effectively play the role of the surface passivation. This SAM layer reduces the trap-assisted recombination, minimizes the energy offset between the NiOx NPs and perovskite, and changes the HTL surface wettability, thus enhancing the perovskite crystallization, resulting in more stable PSCs with enhanced power conversion efficiency (PCE) of 18.4 %, exceeding the control device PCE (15.5 %). Also, we incorporated the above-mentioned SAMs into flexible PSCs (F-PSCs) and achieved one of the highest PCE of 16.2 % on a polyethylene terephthalate (PET) substrate with a remarkable power-per-weight of 26.9 W g-1 . This facile interfacial engineering method offers great potential for the large-scale manufacturing and commercialization of PSCs.


Assuntos
Compostos de Cálcio/química , Fontes de Energia Elétrica , Nanopartículas/química , Níquel/química , Óxidos/química , Energia Solar , Titânio/química , Modelos Moleculares , Conformação Molecular , Temperatura
8.
Nanomicro Lett ; 9(1): 3, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30460300

RESUMO

Thin films and thin film devices have a ubiquitous presence in numerous conventional and emerging technologies. This is because of the recent advances in nanotechnology, the development of functional and smart materials, conducting polymers, molecular semiconductors, carbon nanotubes, and graphene, and the employment of unique properties of thin films and ultrathin films, such as high surface area, controlled nanostructure for effective charge transfer, and special physical and chemical properties, to develop new thin film devices. This paper is therefore intended to provide a concise critical review and research directions on most thin film devices, including thin film transistors, data storage memory, solar cells, organic light-emitting diodes, thermoelectric devices, smart materials, sensors, and actuators. The thin film devices may consist of organic, inorganic, and composite thin layers, and share similar functionality, properties, and fabrication routes. Therefore, due to the multidisciplinary nature of thin film devices, knowledge and advances already made in one area may be applicable to other similar areas. Owing to the importance of developing low-cost, scalable, and vacuum-free fabrication routes, this paper focuses on thin film devices that may be processed and deposited from solution.

9.
ACS Appl Mater Interfaces ; 8(46): 32068-32076, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27804290

RESUMO

Inverted p-i-n perovskite solar cells (PVSCs) using PEDOT:PSS as the hole-transporting layer (HTL) is one of the most widely adopted device structures thus far due to its facile processability and good compatibility for high throughput manufacturing processes. However, most of the PEDOT:PSS-based CH3NH3PbI3 PVSCs reported to date suffered an inferior open-circuit voltage (VOC) (0.88-0.95 V) compared to that (1.05-1.12 V) obtained for common CH3NH3PbI3 PVSCs, revealing a severe potential loss issue. Herein, we describe a simple method to alleviate this problem by tuning the pH value of PEDOT:PSS with a mild base, imidazole. Accompanied by the pH modulation, the blended imidazole concurrently tailors the surface texture and electronic properties of PEDOT:PSS to promote the quality and crystallization of the perovskite film deposited on top of it and enable better energy-level alignment at this corresponding interface. Consequently, the PVSC using this modified PEDOT:PSS HTL yields an enhanced power conversion efficiency (PCE) of 15.7% with an enlarged VOC of 1.06 V and improved long-term stability. These outperform the pristine device showing a PCE of 12.7% with a much smaller VOC of 0.88 V and unsatisfactory environmental stability.

10.
Nanoscale Res Lett ; 11(1): 408, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27639581

RESUMO

In this paper, two-step sequential spin-dip and spin-spin coating, as well as one-step spin coating, methods are used to fabricate methylammonium lead mixed-halide perovskites to study the effect of process parameters, including the choice of the solvent, annealing temperature, spin velocity, and dipping time on the characteristics of the perovskite film. Our results show that using a mixture of DMF and DMSO, with volume ratio of 1:1, as the organic solvents for PbCl2 results in the best mixed-halide perovskite because of the effective coordination between DMSO and PbCl2. Surface dewetting due to two effects, i.e., crystallization and thin liquid film instability, is observed and discussed, where an intermediate spin velocity of about 4000 rpm is found suitable to suppress dewetting. The perovskite film fabricated using the one-step method followed by anti-solvent treatment shows the best perovskite conversion in XRD patterns, and the planar device fabricated using the same method exhibited the highest efficiency among the employed methods. The perovskite layer made by sequential spin-dip coating is found thicker with higher absorbance, but the device shows a lower efficiency because of the challenges associated with perovskite conversion in the sequential method. The one-step deposition method is found easier to control and more promising than the sequential deposition methods.

11.
Eur Phys J E Soft Matter ; 39(3): 30, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26993991

RESUMO

Drying and crystallization of a thin liquid film of an ionic or a similar solution can cause dewetting in the resulting thin solid film. This paper aims at investigating this type of dewetting, herein termed "crystallization dewetting", using PbI2 dissolved in organic solvents as the model solution. PbI2 solid films are usually used in X-ray detection and lead halide perovskite solar cells. In this work, PbI2 films are fabricated using spin coating and the effect of major parameters influencing the crystallization dewetting, including the type of the solvent, solution concentration, drying temperature, spin speed, as well as imposed vibration on the substrate are studied on dewetting, surface profile and coverage, using confocal scanning laser microscopy. Simplified hydrodynamic governing equations of crystallization in thin films are presented and using a mathematical representation of the process, it is phenomenologically demonstrated that crystallization dewetting occurs due to the absorption and consumption of the solution surrounding a growing crystal. Among the results, it is found that a low spin speed (high thickness), a high solution concentration and a low drying temperature promote crystal growth, and therefore crystallization dewetting. It is also shown that imposed vibration on the substrate can affect the crystal size and crystallization dewetting.

12.
Nanoscale Res Lett ; 11(1): 71, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26847697

RESUMO

In this paper, a scalable and fast process is developed and employed for the fabrication of the perovskite light harvesting layer in inverted planar heterojunction solar cell (FTO/PEDOT:PSS/CH3NH3PbI3-x Cl x /PCBM/Al). Perovskite precursor solutions are sprayed onto an ultrasonically vibrating substrate in two sequential steps via a process herein termed as the two-step sequential substrate vibration-assisted spray coating (2S-SVASC). The gentle imposed ultrasonic vibration on the substrate promotes droplet spreading and coalescence, surface wetting, evaporation, mixing of reagents, and uniform growth of perovskite nanocrystals. The role of the substrate temperature, substrate vibration intensity, and the time interval between the two sequential sprays are studied on the roughness, coverage, and crystalline structure of perovskite thin films. We demonstrate that a combination of a long time interval between spraying of precursor solutions (15 min), a high substrate temperature (120 °C), and a mild substrate vibration power (5 W) results in a favorable morphology and surface quality. The characteristics and performance of prepared perovskite thin films made via the 2S-SVASC technique are compared with those of the co-sprayed perovskite thin films. The maximum power conversion efficiency of 5.08 % on a 0.3-cm(2) active area is obtained for the device made via the scalable 2S-SVASC technique.

13.
Ultrasonics ; 67: 55-64, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26775261

RESUMO

The main goal of this paper is to introduce a novel mechanical method herein terms as substrate vibration post treatment (SVPT) technique, powered by ultrasonic vibration imposed on the substrate to enhance the characteristics and functionality of spun-on thin films or thin films made by similar casting techniques, such as drop and dip coating. In this technique, the as-casted wet films are placed on a substrate vibrated by an ultrasonic transducer with controlled power and duration to improve the film characteristics, such as uniformity and nanostructure. The performance of this technique is examined on spun-on PEDOT: PSS thin films used in polymer and perovskite solar cells and unprecedented results are presented. We first explore the influence of the vibration duration time on the characteristics of the films made by pristine PEDOT: PSS solution, where it is found that the optimized vibration duration for the pristine PEDOT: PSS film is about 10s, resulting in significant increase in the film electrical conductivity and lowered thickness and roughness. In order to further test the generality and merit of the method, thin films made using PEDOT: PSS solution modified with various types of surfactants and cured by the SVPT are studied. The results show that the application of the SVPT method combined with surfactant modification leads to an impressive twelve-fold increase in the conductivity of the PEDOT: PSS thin films compared with that of the pristine non-vibrated PEDOT: PSS thin films. The sole effect of the SVPT is a four-fold increase in the conductivity of pristine PEDOT: PSS film compared with that of the non-vibrated film. This remarkable enhancement in conductivity is further explained by the AFM phase images of PEDOT: PSS films, showing that the ultrasonic energy could loosen the Coulomb forces between PEDOT and PSS chains, resulting in phase separation and localized reordering of the conducting PEDOT chains leading to an increase in the electrical conductivity of the film. Highly conductive PEDOT: PSS thin film is a viable candidate as electrodes in emerging solution-processed solar cells.

14.
Nanoscale Res Lett ; 10(1): 462, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26625886

RESUMO

A simple, low-cost, versatile, and potentially scalable casting method is proposed for the fabrication of micro- and nano-thin films, herein termed as ultrasonic "substrate vibration-assisted drop casting" (SVADC). The impingement of a solution drop onto a substrate in a simple process called drop casting, usually results in spreading of the liquid solution and the formation of a non-uniform thin solid film after solvent evaporation. Our previous and current supporting results, as well as few similar reports by others, confirm that imposing ultrasonic vibration on the substrate can simply convert the uncontrollable drop casting method into a controllable coating technique. Therefore, the SVADC may be used to fabricate an array of emerging thin-film solar cells, such as polymer, perovskite, and quantum-dot solar cells, as well as other small thin-film devices, in a roll-to-roll and automated fabrication process. The preliminary results demonstrate a ten-fold increase in electrical conductivity of PEDOT: PSS made by SVADC compared with the film made by conventional drop casting. Also, simple planar perovskite solar cells made here using SVADC show promising performance with an efficiency of over 3 % for a simple structure without performing process optimization or using expensive materials and treatments.

15.
Nanoscale Res Lett ; 10(1): 1006, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26183389

RESUMO

Laminar natural convection in differentially heated (ß = 0°, where ß is the inclination angle), inclined (ß = 30° and 60°), and bottom-heated (ß = 90°) square enclosures filled with a nanofluid is investigated, using a two-phase lattice Boltzmann simulation approach. The effects of the inclination angle on Nu number and convection heat transfer coefficient are studied. The effects of thermophoresis and Brownian forces which create a relative drift or slip velocity between the particles and the base fluid are included in the simulation. The effect of thermophoresis is considered using an accurate and quantitative formula proposed by the authors. Some of the existing results on natural convection are erroneous due to using wrong thermophoresis models or simply ignoring the effect. Here we show that thermophoresis has a considerable effect on heat transfer augmentation in laminar natural convection. Our non-homogenous modeling approach shows that heat transfer in nanofluids is a function of the inclination angle and Ra number. It also reveals some details of flow behavior which cannot be captured by single-phase models. The minimum heat transfer rate is associated with ß = 90° (bottom-heated) and the maximum heat transfer rate occurs in an inclination angle which varies with the Ra number.

16.
Recent Pat Nanotechnol ; 8(3): 157-64, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25336173

RESUMO

Cell manipulation is instrumental in most biological applications. One of the most promising methods in handling cells and other biological particles is the magnetic manipulation technique. In this technique, magnetic nanoparticles are employed to magnetize cells. Such cells then can be manipulated, sorted, or separated by applying an external magnetic field. In this work, first recent works and patents on the synthesis methods used for producing magnetic nanoparticles are investigated. These methods include co-precipitation, solvothermal, electrical wire explosion, microemulsion, laser pyrolysis, spray pyrolysis and carbon reduction. Then recent patents and articles on surface modification and functionalization of magnetic nanoparticles using polymers, dithiocarbamate, superparamagnetic shells, antibodies, graphene shells, and fluorescent materials are reviewed. Finally, different techniques on magnetic cell manipulation, such as direct attaching of magnetic particles to cells, employing intercellular markers or extra support molecules, as well as magnetic thin films, microfluidic channels and magnetic beads, are studied.


Assuntos
Técnicas Citológicas , Nanopartículas de Magnetita , Patentes como Assunto , Células Cultivadas , Separação Imunomagnética , Microfluídica , Polímeros
17.
Phys Chem Chem Phys ; 12(41): 13835-48, 2010 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-20856973

RESUMO

In this paper following the linear non-equilibrium thermodynamics approach, an expression is derived for the calculation of the thermodiffusion factor in binary liquid metal alloys. The expression is comprised of two terms; the first term accounts for the thermally driven interactions between metal ions, a phenomenon similar to that of the non-ionic binary mixtures, such as hydrocarbons; the second term is called the electronic contribution and is the mass diffusion due to an internal electric field that is induced as a result of the imposed thermal gradient. Both terms are formulated as functions of the net heats of transport. The ion-ion net heat of transport is simulated by the activation energy of viscous flow and the electronic net heat of transport is correlated with the force acting on the ions by the rearrangement of the conduction electrons and ions. A methodology is presented and used to estimate the liquid metal properties, such as the partial molar internal energies, enthalpies, volumes and the activity coefficients used for model validation. The prediction power of the proposed expression along with some other existing thermodiffusion models for liquid mixtures, such as the Haase, Kempers, Drickamer and Firoozabadi formulas are examined against available experimental data obtained on ground or in microgravity environment. The proposed model satisfactorily predicts the thermodiffusion data of mixtures that are composed of elements with comparable melting points. It is also potentially and qualitatively able to predict a sign change in thermodiffusion factor of Na-K liquid mixture. With some speculation, the sign change is attributed to an anomalous change in thermoelectric power of Na-K mixture with composition.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(1 Pt 1): 011201, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19658691

RESUMO

Following the nonequilibrium thermodynamics approach, we develop a dynamic model to emulate thermo-diffusion process and propose expressions for estimating the thermal diffusion factor in binary nonassociating liquid mixtures. Here, we correlate the net heat of transport in thermodiffusion with parameters, such as the mixture temperature and pressure, the size and shape of the molecules, and mobility of the components, because the molecules have to become activated before they can move. Based on this interpretation, the net heat of transport of each component can be somehow related to the viscosity and the activation energy of viscous flow of the same component defined in Eyring's reaction-rate theory [S. Glasstone, K. J. Laidler, and H. Eyring, (McGraw-Hill, New York, 1941)]. This modeling approach is different from that of Haase and Kempers, in which thermodiffusion is considered as a function of the thermostatic properties of the mixture such as enthalpy. In simulating thermodiffusion, by correlating the net heat of transport with the activation energy of viscous flow, effects of the above mentioned parameters are accounted for, to some extent of course. The model developed here along with Haase-Kempers and Drickamer-Firoozabadi models linked with the Peng-Robinson equation of sate are evaluated against the experimental data for several recent nonassociating binary mixtures at various temperatures, pressures, and concentrations. Although the model prediction is still not perfect, the model is simple and easy to use, physically justified, and predicts the experimental data very good and much better than the existing models.

19.
Recent Pat Nanotechnol ; 3(2): 99-115, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19519594

RESUMO

Micro- and nano-sized metal, semiconductor, pharmaceutical, and simple or complex ceramic particles have numerous applications in the development of sensors, thermal barrier coatings, catalysts, pigments, drugs, etc. The challenges include controlling the particle size, size distribution, particle crystallinity, morphology and shape, being able to use the nanoparticles for a given purpose, and to produce them from a variety of precursors. There are several methods to produce nanoparticles, each suitable for a range of applications. In this article, two methods that are receiving increasing attention are considered: spray and microemulsion methods. Spray techniques are single-step methods of producing a broad spectrum of simple to multicomponent functional micro and nanoparticles and quantum dots. Microemulsion is a wet chemistry method. A micro-emulsion system consists of aqueous domains, called reverse micelles, dispersed in a continuous oil phase. In this article, the above mentioned methods of nanoparticle production are introduced and recent advances, research directions and challenges, and the pertinent patents are reviewed and discussed.


Assuntos
Nanopartículas/química , Nanotecnologia/métodos , Emulsões , Ionização de Chama , Liofilização , Nanopartículas Metálicas/química , Pontos Quânticos
20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(6 Pt 1): 061201, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20365155

RESUMO

Thermodiffusion in associating mixtures is a complex phenomenon, owing to the strong dependence of the molecular structure of such mixtures on concentration. In this paper, we attempt to elucidate this phenomenon and propose a qualitative mechanism for the separation of species in binary associating mixtures. A correlation between the sign change in the thermal diffusion factor and a change in the molecular structure, mixture viscosity, and the excess entropy of mixing in such mixtures is established. To quantify this correlation, we modify our recently developed dynamic model based on the Drickamer nonequilibrium thermodynamic approach [M. Eslamian and M. Z. Saghir, Phys. Rev. E 80, 011201 (2009)] and propose expressions for the estimation of thermal diffusion factor in binary associating mixtures. The prediction power of the proposed expressions, as well as other widely used models, are examined against the experimental data. The proposed theoretical expressions are self-contained and only rely on the viscosity data as input and predict a sign change in the thermal diffusion factor in associating mixtures.


Assuntos
Misturas Complexas/química , Difusão , Modelos Químicos , Soluções/química , Simulação por Computador , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA