Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3757, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355712

RESUMO

Many species learn temporal regularities in their visual environment, demonstrating visual statistical learning. In this study, we explored the sensitivity of macaque inferior temporal (IT) cortical neurons to transition probabilities of sequentially presented visual images, presented at different locations in the visual field. We exposed monkeys to sequences of two images, where the first image was presented either foveally or peripherally, and the second image was consistently presented foveally. Following several weeks of exposure, we recorded IT responses to assess differences between the exposed (Fixed) and new, Deviant sequences, where the identity of the first image in a sequence differed from the exposure phase. While enhanced responses to Deviant sequences were observed when both images of a pair were foveally presented during exposure, no such deviant responses were present when the first image was presented peripherally. This finding challenges the notion that mere exposure to image sequences always leads to deviant responses in macaque IT. The results highlight the complexity of the mechanisms underlying statistical learning in primates, particularly in the context of peripheral image presentations, emphasizing the need for further investigation into the origins of these responses in the IT cortex.


Assuntos
Lobo Temporal , Campos Visuais , Animais , Macaca mulatta , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia , Neurônios/fisiologia , Estimulação Luminosa , Aprendizagem Espacial
2.
Cereb Cortex ; 33(6): 3124-3141, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35780398

RESUMO

Primates learn statistical regularities that are embedded in visual sequences, a form of statistical learning. Single-unit recordings in macaques showed that inferior temporal (IT) neurons are sensitive to statistical regularities in visual sequences. Here, we asked whether ventrolateral prefrontal cortex (VLPFC), which is connected to IT, is also sensitive to the transition probabilities in visual sequences and whether the statistical learning signal in IT originates in VLPFC. We recorded simultaneously multiunit activity (MUA) and local field potentials (LFPs) in IT and VLPFC after monkeys were exposed to triplets of images with a fixed presentation order. In both areas, the MUA was stronger to images that violated the learned sequence (deviants) compared to the same images presented in the learned triplets. The high-gamma and beta LFP power showed an enhanced and suppressed response, respectively, to the deviants in both areas. The enhanced response was present also for the image following the deviant, suggesting a sensitivity for temporal adjacent dependencies in IT and VLPFC. The increased response to the deviant occurred later in VLPFC than in IT, suggesting that the deviant response in IT was not inherited from VLPFC. These data support predictive coding theories that propose a feedforward flow of prediction errors.


Assuntos
Córtex Pré-Frontal , Lobo Temporal , Animais , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia , Macaca , Córtex Cerebral , Aprendizagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...