Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 192(2): 1000-1015, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36856724

RESUMO

Cell wall synthesis and protein glycosylation require the import of nucleotide diphosphate-sugar conjugates into the Golgi that must be counterbalanced by phosphate (Pi) export. Numerous Golgi nucleotide-sugar transporters have been characterized, but transporters mediating Golgi Pi export remain poorly understood. We used plant and yeast genetics to characterize the role of 2 Arabidopsis (Arabidopsis thaliana) proteins possessing an EXS domain, namely ERD1A and ERD1B, in Golgi Pi homeostasis. ERD1A and ERD1B localized in cis-Golgi and were broadly expressed in vegetative and reproductive tissues. We identified ERD1 putative orthologs in algae, bryophytes, and vascular plants. Expressing ERD1A and ERD1B in yeast complemented the erd1 mutant phenotype of cellular Pi loss via exocytosis associated with reduced Golgi Pi export. The Arabidopsis erd1a mutant had a similar phenotype of apoplastic Pi loss dependent on exocytosis. ERD1A overexpression in Nicotiana benthamiana and Arabidopsis led to partial mislocalization of ERD1A to the plasma membrane and specific Pi export to the apoplastic space. Arabidopsis erd1a had defects in cell wall biosynthesis, which were associated with reduced shoot development, hypocotyl growth, cell wall extensibility, root elongation, pollen germination, pollen tube elongation, and fertility. We identified ERD1 proteins as Golgi Pi exporters that are essential for optimal plant growth and fertility.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Saccharomyces cerevisiae/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Desenvolvimento Vegetal , Nucleotídeos/metabolismo
2.
J Agric Food Chem ; 70(36): 11201-11211, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36039940

RESUMO

Protein hydrolysates (PHs) are plant biostimulants consisting of oligopeptides and free amino acids exploited in agriculture to increase crop productivity. This work aimed to fractionate a commercial collagen-derived protein hydrolysate (CDPH) according to the molecular mass of the peptides and evaluate the bioactivity of different components. First, the CDPH was dialyzed and/or filtrated and analyzed on maize, showing that smaller compounds were particularly active in stimulating lateral root growth. The CDPH was then fractionated through fast protein liquid chromatography and tested on in vitro grown tomatoes proving that all the fractions were bioactive. Furthermore, these fractions were characterized by liquid chromatography-electrospray ionization-tandem mass spectrometry revealing a consensus sequence shared among the identified peptides. Based on this sequence, a synthetic peptide was produced. We assessed its structural similarity with the CDPH, the collagen, and polyproline type II helix by comparing the respective circular dichroism spectra and for the first time, we proved that a signature peptide was as bioactive as the whole CDPH.


Assuntos
Peptídeos , Hidrolisados de Proteína , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Colágeno/química , Peptídeos/química , Hidrolisados de Proteína/química
3.
Plants (Basel) ; 11(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35406823

RESUMO

In the present study, the mode of action of coumarin using the germination process as a target was investigated. A dose-response curve, built using a range of concentrations from 0 to 800 µM, allowed us to identify a key concentration (400 µM) inhibiting the germination process, reducing its speed without compromising seed development. Successively, short time-course (0-48 h) experiments were carried out to evaluate the biochemical and metabolic processes involved in coumarin-induced germination delay. The results pointed out that coumarin delayed K+, Ca2+, and Mg2+ reabsorption, suggesting a late membrane reorganisation. Similarly, seed respiration was inhibited during the first 24 h but recovered after 48 h. Those results agreed with ATP levels, which followed the same trend. In addition, the untargeted metabolomic analysis allowed to identify, among the pathways significantly impacted by the treatment, amino acids metabolism, the TCA cycle, and the glyoxylate pathway. The results highlighted that coumarin was able to interact with membranes reorganisation, delaying them and reducing the production of ATP, as also supported by pathway analysis and cell respiration. The in vivo 31P-NMR analysis supported the hypothesis that the concentration chosen was able to affect plant metabolism, maintaining, on the other hand, its viability, which is extremely important for studying natural compounds' mode of action.

4.
Plants (Basel) ; 10(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916130

RESUMO

Nitrogen nutrition in plants is a key determinant in crop productivity. The availability of nitrogen nutrients in the soil, both inorganic (nitrate and ammonium) and organic (urea and free amino acids), highly differs and influences plant physiology, growth, metabolism, and root morphology. Deciphering this multifaceted scenario is mandatory to improve the agricultural sustainability. In root cells, specific proteins located at the plasma membrane play key roles in the transport and sensing of nitrogen forms. This review outlines the current knowledge regarding the biochemical and physiological aspects behind the uptake of the individual nitrogen forms, their reciprocal interactions, the influences on root system architecture, and the relations with other proteins sustaining fundamental plasma membrane functionalities, such as aquaporins and H+-ATPase. This topic is explored starting from the information achieved in the model plant Arabidopsis and moving to crops in agricultural soils. Moreover, the main contributions provided by proteomics are described in order to highlight the goals and pitfalls of this approach and to get new hints for future studies.

5.
Plants (Basel) ; 10(4)2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920578

RESUMO

In agricultural soils, nitrate (NO3-) is the major nitrogen (N) nutrient for plants, but few studies have analyzed molecular and biochemical responses involved in its acquisition by grapevine roots. In viticulture, considering grafting, NO3- acquisition is strictly dependent on rootstock. To improve the knowledge about N nutrition in grapevine, this study analyzed biochemical and proteomic changes induced by, NO3- availability, in a hydroponic system, in the roots of M4, a recently selected grapevine rootstock. The evaluation of biochemical parameters, such as NO3-, sugar and amino acid contents in roots, and the abundance of nitrate reductase, allowed us to define the time course of the metabolic adaptations to NO3- supply. On the basis of these results, the proteomic analysis was conducted by comparing the root profiles in N-starved plants and after 30 h of NO3- resupply. The analysis quantified 461 proteins, 26% of which differed in abundance between conditions. Overall, this approach highlighted, together with an increased N assimilatory metabolism, a concomitant rise in the oxidative pentose phosphate pathway and glycolysis, needed to fulfill the redox power and carbon skeleton demands, respectively. Moreover, a wide modulation of protein and amino acid metabolisms and changes of proteins involved in root development were observed. Finally, some results open new questions about the importance of redox-related post-translational modifications and of NO3- availability in modulating the dialog between root and rhizosphere.

6.
Plant Physiol Biochem ; 150: 270-278, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32183955

RESUMO

Oxidations in grape berries are gaining major interest as they affect grape characteristics and quality. Considering berries, Reactive Oxygen Species are involved in the responses to both ripening process and stresses, including photooxidative sunburn. Redox metabolism involves a multitude of chemical and enzymatic reactions. In this study, four white grape cultivars were examined for natural ripening and photooxidative sunburn effects (obtained in artificial conditions) on berry pigmentation, chemical composition and enzymatic activity. The measured parameters included reflectance spectra, pigmentation (including berry browning), content of photosynthetic pigments, organic acid profiles, antioxidant activity, concentrations of antioxidants (total phenolics, ascorbic acid and reduced glutathione), enzymatic activities (guaiacol peroxidases, ascorbate peroxidase and catalase). The effects of the treatment (natural ripening and artificial photooxidative sunburn) on each considered parameter are described in the paper. Photooxidative sunburn strongly affected the contents of antioxidants and chlorophylls, increased the browning index and modulated the enzymatic activities investigated. Samples clearly clustered depending on the oxidation status. Furthermore, the PCA highlighted the similarities and differences in the responses to oxidative stress during ripening and photooxidative sunburn. PCA produced five functions with eigenvalues higher than 1, representing 87.03% of the total variability. In particular, the scores of the function 1 discriminated the samples based on the oxidation status, while the function 2 separated the samples based on the sampling date, representing the physiological responses characteristic of ripening. Our work sheds light on this topic, and will allow a more conscious vineyard management, thus supporting the agricultural adaptation to climate changes.


Assuntos
Queimadura Solar , Vitis , Frutas/metabolismo , Oxirredução , Pigmentação/fisiologia , Vitis/metabolismo
8.
Plants (Basel) ; 9(1)2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31877999

RESUMO

Basil (Ocimum basilicum L.) is a culinary, medicinal, and ornamental plant appreciated for its antioxidant properties, mainly attributed to high content of rosmarinic acid. This species also includes purple varieties, characterized by the accumulation of anthocyanins in leaves and flowers. In this work, we compared the main morphological characteristics, the antioxidant capacity and the chemical composition in leaves, flowers, and corollas of green ('Italiano Classico') and purple ('Red Rubin' and 'Dark Opal') basil varieties. The LC-ESI-MS/MS analysis of individual compounds allowed quantifying 17 (poly)phenolic acids and 18 flavonoids, differently accumulated in leaves and flowers of the three varieties. The study revealed that in addition to rosmarinic acid, basil contains several members of the salvianolic acid family, only scarcely descripted in this species, as well as, especially in flowers, simple phenolic acids, such as 4-hydroxybenzoic acid and salvianic acid A. Moreover, the study revealed that purple leaves mainly contain highly acylated anthocyanins, while purple flowers accumulate anthocyanins with low degree of decoration. Overall, this study provides new biochemical information about the presence of not yet characterized bioactive compounds in basil that could contribute to boosting the use of this crop and to gaining new knowledge about the roles of these compounds in plant physiology.

9.
J Exp Bot ; 69(21): 5013-5027, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30085182

RESUMO

In the lumen of the endoplasmic reticulum (ER), prolamin storage proteins of cereal seeds form very large, ordered heteropolymers termed protein bodies (PBs), which are insoluble unless treated with alcohol or reducing agents. In maize PBs, 16-kD γ-zein locates at the interface between a core of alcohol-soluble α-zeins and the outermost layer mainly composed of the reduced-soluble 27-kD γ-zein. 16-kD γ-zein originates from 27-kD γ-zein upon whole-genome duplication and is mainly characterized by deletions in the N-terminal domain that eliminate most Pro-rich repeats and part of the Cys residues involved in inter-chain bonds. 27-kD γ-zein also forms insoluble PBs when expressed in transgenic vegetative tissues. We show that in Arabidopsis leaves, 16-kD γ-zein assembles into disulfide-linked polymers that fail to efficiently become insoluble. Instead of forming PBs, these polymers accumulate as very unusual threads that markedly enlarge the ER lumen, resembling amyloid-like fibers. Domain-swapping between the two γ-zeins indicates that the N-terminal region of 16-kD γ-zein has a dominant effect in preventing full insolubilization. Therefore, a newly evolved prolamin has lost the ability to form homotypic PBs, and has acquired a new function in the assembly of natural, heteropolymeric PBs.


Assuntos
Retículo Endoplasmático/metabolismo , Polímeros/metabolismo , Prolaminas/metabolismo , Zea mays/genética , Zeína/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Dissulfetos/metabolismo , Evolução Molecular , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Polimerização , Zea mays/metabolismo , Zeína/química , Zeína/metabolismo
10.
Int J Mol Sci ; 19(8)2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30060519

RESUMO

The availability of nitrate and ammonium significantly affects plant growth. Co-provision of both nutrients is generally the best nutritional condition, due to metabolic interactions not yet fully elucidated. In this study, maize grown in hydroponics was exposed to different nitrogen (N) availabilities, consisting of nitrate, ammonium and co-provision. Roots and leaves were analyzed after 6, 30, and 54 h by biochemical evaluations and proteomics. The ammonium-fed plants showed the lowest biomass accumulation and the lowest ratio of inorganic to organic N content, suggesting a metabolic need to assimilate ammonium that was not evident in plants grown in co-provision. The N sources differently affected the root proteome, inducing changes in abundance of proteins involved in N and carbon (C) metabolisms, cell water homeostasis, and cell wall metabolism. Notable among these changes was that some root enzymes, such as asparagine synthetase, phosphoenolpyruvate (PEP) carboxylase, and formate dehydrogenase showed a relevant upsurge only under the sole ammonium nutrition. However, the leaf proteome appeared mainly influenced by total N availability, showing changes in the abundance of several proteins involved in photosynthesis and in energy metabolism. Overall, the study provides novel information about the biochemical determinants involved in plant adaptation to different N mineral forms.


Assuntos
Compostos de Amônio/metabolismo , Nitratos/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Proteômica , Zea mays/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Células Vegetais/química , Células Vegetais/metabolismo , Folhas de Planta/química , Proteínas de Plantas/metabolismo , Raízes de Plantas/química , Estresse Fisiológico/efeitos dos fármacos , Água/metabolismo , Zea mays/crescimento & desenvolvimento
11.
BMC Plant Biol ; 18(1): 126, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925320

RESUMO

BACKGROUND: Roots play a central role in plant response to water stress (WS). They are involved in its perception and signalling to the leaf as well as in allowing the plant to adapt to maintaining an adequate water balance. Only a few studies have investigated the molecular/biochemical responses to WS in roots of perennial plants, such as grapevine. This study compares two grapevine rootstock genotypes (i.e. 101.14 and M4) with different tolerance to WS, evaluating the responses at proteomic and metabolite levels. RESULTS: WS induced changes in the abundance of several proteins in both genotypes (17 and 22% of the detected proteins in 101.14 and M4, respectively). The proteomic analysis revealed changes in many metabolic pathways that fitted well with the metabolite data. M4 showed metabolic responses which were potentially able to counteract the WS effects, such as the drop in cell turgor, increased oxidative stress and loss of cell structure integrity/functionality. However, in 101.14 it was evident that the roots were suffering more severely from these effects. We found that many proteins classified as active in energy metabolism, hormone metabolism, protein, secondary metabolism and stress functional classes showed particular differences between the two rootstocks. CONCLUSION: The proteomic/metabolite comparative analysis carried out provides new information on the possible biochemical and molecular strategies adopted by grapevine roots to counteract WS. Although further work is needed to define in detail the role(s) of the proteins and metabolites that characterize WS response, this study, involving the M4 rootstock genotype, highlights that osmotic responses, modulations of C metabolism, mitochondrial functionality and some specific responses to stress occurring in the roots play a primary role in Vitis spp. tolerance to this type of abiotic stress.


Assuntos
Raízes de Plantas/metabolismo , Vitis/metabolismo , Desidratação , Redes e Vias Metabólicas , Metabolômica , Oxirredução , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Raízes de Plantas/fisiologia , Proteômica , Vitis/fisiologia
12.
Front Plant Sci ; 7: 1657, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27877183

RESUMO

The induction, i.e., the rapid increase of nitrate ([Formula: see text]) uptake following the exposure of roots to the anion, was studied integrating physiological and molecular levels in maize roots. Responses to [Formula: see text] treatment were characterized in terms of changes in [Formula: see text] uptake rate and plasma membrane (PM) H+-ATPase activity and related to transcriptional and protein profiles of NRT2, NRT3, and PM H+-ATPase gene families. The behavior of transcripts and proteins of ZmNRT2s and ZmNRT3s suggested that the regulation of the activity of inducible high-affinity transport system (iHATS) is mainly based on the transcriptional/translational modulation of the accessory protein ZmNRT3.1A. Furthermore, ZmNRT2.1 and ZmNRT3.1A appear to be associated in a ∼150 kDa oligomer. The expression trend during the induction of the 11 identified PM H+-ATPase transcripts indicates that those mainly involved in the response to [Formula: see text] treatment are ZmHA2 and ZmHA4. Yet, partial correlation between the gene expression, protein levels and enzyme activity suggests an involvement of post-transcriptional and post-translational mechanisms of regulation. A non-denaturing Deriphat-PAGE approach allowed demonstrating for the first time that PM H+-ATPase can occur in vivo as hexameric complex together with the already described monomeric and dimeric forms.

13.
J Agric Food Chem ; 64(20): 4171-81, 2016 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-27144542

RESUMO

The somaclonal variant HS, from sweet cherry (Prunus avium L.) 'Hedelfinger' (H), was previously selected for reduced tree vegetative vigor and lesser canopy density. In this work, we compared H and HS fruits at early unripe (green) and full ripe (dark red) stages by biochemical and proteomic approaches. The main biochemical parameters showed that fruit quality was not affected by somaclonal variation. The proteomic analysis identified 39 proteins differentially accumulated between H and HS fruits at the two ripening stages, embracing enzymes involved in several pathways, such as carbon metabolism, cell wall modification, stress response, and secondary metabolism. The evaluation of fruit phenolic composition by mass spectrometry showed that HS sweet cherries have higher levels of procyanidin, flavonol, and anthocyanin compounds. This work provides the first proteomic characterization of fruit ripening in sweet cherry, revealing new positive traits of the HS somaclonal variant.


Assuntos
Frutas/química , Proteínas de Plantas/química , Prunus avium/química , Antocianinas/análise , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Fenóis/análise , Proteínas de Plantas/metabolismo , Proteômica , Prunus avium/crescimento & desenvolvimento , Prunus avium/metabolismo
14.
BMC Plant Biol ; 16: 44, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26863869

RESUMO

BACKGROUND: In melting flesh peaches, auxin is necessary for system-2 ethylene synthesis and a cross-talk between ethylene and auxin occurs during the ripening process. To elucidate this interaction at the transition from maturation to ripening and the accompanying switch from system-1 to system-2 ethylene biosynthesis, fruits of melting flesh and stony hard genotypes, the latter unable to produce system-2 ethylene because of insufficient amount of auxin at ripening, were treated with auxin, ethylene and with 1-methylcyclopropene (1-MCP), known to block ethylene receptors. The effects of the treatments on the different genotypes were monitored by hormone quantifications and transcription profiling. RESULTS: In melting flesh fruit, 1-MCP responses differed according to the ripening stage. Unexpectedly, 1-MCP induced genes also up-regulated by ripening, ethylene and auxin, as CTG134, similar to GOLVEN (GLV) peptides, and repressed genes also down-regulated by ripening, ethylene and auxin, as CTG85, a calcineurin B-like protein. The nature and transcriptional response of CTG134 led to discover a rise in free auxin in 1-MCP treated fruit. This increase was supported by the induced transcription of CTG475, an IAA-amino acid hydrolase. A melting flesh and a stony hard genotype, differing for their ability to synthetize auxin and ethylene amounts at ripening, were used to study the fine temporal regulation and auxin responsiveness of genes involved in the process. Transcriptional waves showed a tight interdependence between auxin and ethylene actions with the former possibly enhanced by the GLV CTG134. The expression of genes involved in the regulation of ripening, among which are several transcription factors, was similar in the two genotypes or could be rescued by auxin application in the stony hard. Only GLV CTG134 expression could not be rescued by exogenous auxin. CONCLUSIONS: 1-MCP treatment of peach fruit is ineffective in delaying ripening because it stimulates an increase in free auxin. As a consequence, a burst in ethylene production speeding up ripening occurs. Based on a network of gene transcriptional regulations, a model in which appropriate level of CTG134 peptide hormone might be necessary to allow the correct balance between auxin and ethylene for peach ripening to occur is proposed.


Assuntos
Etilenos , Frutas/crescimento & desenvolvimento , Ácidos Indolacéticos , Hormônios Peptídicos/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Prunus persica/crescimento & desenvolvimento , Etilenos/biossíntese
15.
J Proteomics ; 131: 38-47, 2016 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-26459403

RESUMO

The Petunia hybrida ANTHOCYANIN1 (AN1) gene encodes a transcription factor that regulates both the expression of genes involved in anthocyanin synthesis and the acidification of the vacuolar lumen in corolla epidermal cells. In this work, the comparison between the red flowers of the R27 line with the white flowers of the isogenic an1 mutant line W225 showed that the AN1 gene has further pleiotropic effects on flavonoid biosynthesis as well as on distant physiological traits. The proteomic profiling showed that the an1 mutation was associated to changes in accumulation of several proteins, affecting both anthocyanin synthesis and primary metabolism. The flavonoid composition study confirmed that the an1 mutation provoked a broad attenuation of the entire flavonoid pathway, probably by indirect biochemical events. Moreover, proteomic changes and variation of biochemical parameters revealed that the an1 mutation induced a delay in the onset of flower senescence in W225, as supported by the enhanced longevity of the W225 flowers in planta and the loss of sensitivity of cut flowers to sugar. This study suggests that AN1 is possibly involved in the perception and/or transduction of ethylene signal during flower senescence.


Assuntos
Antocianinas/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Flores/fisiologia , Longevidade/fisiologia , Petunia/fisiologia , Proteínas de Plantas/metabolismo , Cor , Proteoma/metabolismo
16.
Front Plant Sci ; 6: 603, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26300900

RESUMO

The role of grape berry skin as a protective barrier against damage by physical injuries and pathogen attacks requires a metabolism able to sustain biosynthetic activities such as those relating to secondary compounds (i.e., flavonoids). In order to draw the attention on these biochemical processes, a proteomic and metabolomic comparative analysis was performed among Riesling Italico, Pinot Gris, Pinot Noir, and Croatina cultivars, which are known to accumulate anthocyanins to a different extent. The application of multivariate statistics on the dataset pointed out that the cultivars were distinguishable from each other and the order in which they were grouped mainly reflected their relative anthocyanin contents. Sorting the spots according to their significance 100 proteins were characterized by LC-ESI-MS/MS. Through GC-MS, performed in Selected Ion Monitoring (SIM) mode, 57 primary metabolites were analyzed and the differences in abundance of 16 of them resulted statistically significant to ANOVA test. Considering the functional distribution, the identified proteins were involved in many physiological processes such as stress, defense, carbon metabolism, energy conversion and secondary metabolism. The trends of some metabolites were related to those of the protein data. Taken together, the results permitted to highlight the relationships between the secondary compound pathways and the main metabolism (e.g., glycolysis and TCA cycle). Moreover, the trend of accumulation of many proteins involved in stress responses, reinforced the idea that they could play a role in the cultivar specific developmental plan.

17.
BMC Plant Biol ; 15: 96, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25886826

RESUMO

BACKGROUND: Glutamine synthetase (GS) catalyzes the first step of nitrogen assimilation in plant cell. The main GS are classified as cytosolic GS1 and plastidial GS2, of which the functionality is variable according to the nitrogen sources, organs and developmental stages. In maize (Zea mays L.) one gene for GS2 and five genes for GS1 subunits are known, but their roles in root metabolism are not yet well defined. In this work, proteomic and biochemical approaches have been used to study root GS enzymes and nitrogen assimilation in maize plants re-supplied with nitrate, ammonium or both. RESULTS: The plant metabolic status highlighted the relevance of root system in maize nitrogen assimilation during both nitrate and ammonium nutrition. The analysis of root proteomes allowed a study to be made of the accumulation and phosphorylation of six GS proteins. Three forms of GS2 were identified, among which only the phosphorylated one showed an accumulation trend consistent with plastidial GS activity. Nitrogen availabilities enabled increments in root total GS synthetase activity, associated with different GS1 isoforms according to the nitrogen sources. Nitrate nutrition induced the specific accumulation of GS1-5 while ammonium led to up-accumulation of both GS1-1 and GS1-5, highlighting co-participation. Moreover, the changes in thermal sensitivity of root GS transferase activity suggested differential rearrangements of the native enzyme. The amino acid accumulation and composition in roots, xylem sap and leaves deeply changed in response to mineral sources. Glutamine showed the prevalent changes in all nitrogen nutritions. Besides, the ammonium nutrition was associated with an accumulation of asparagine and reducing sugars and a drop in glutamic acid level, significantly alleviated by the co-provision with nitrate. CONCLUSION: This work provides new information about the multifaceted regulation of the GS enzyme in maize roots, indicating the involvement of specific isoenzymes/isoforms, post-translational events and biochemical factors. For the first time, the proteomic approach allowed to discriminate the individual contribution of the GS1 isoforms, highlighting the participation of GS1-5 in nitrate metabolism. Moreover, the results give new insights about the influence of amino acid metabolism in plant C/N balance.


Assuntos
Compostos de Amônio/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutamato-Amônia Ligase/genética , Nitratos/metabolismo , Proteínas de Plantas/genética , Zea mays/genética , Sequência de Aminoácidos , Aminoácidos/metabolismo , Western Blotting , Cromatografia Líquida , Glutamato-Amônia Ligase/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Zea mays/metabolismo
18.
Front Plant Sci ; 6: 56, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25717332

RESUMO

Strawberry is one of the most valued fruit worldwide. Modern cultivated varieties (Fragaria × ananassa) exhibit large fruits, with intense color and prolonged shell life. Yet, these valuable traits were attained at the cost of the intensity and the variety of the aroma of the berry, two characteristics highly appreciated by consumers. Wild species display smaller fruits and reduced yield compared with cultivated varieties but they accumulate broader and augmented blends of volatile compounds. Because of the large diversity and strength of aromas occurring in natural and domesticated populations, plant breeders regard wild strawberries as important donors of novel scented molecules. Here we report a comprehensive metabolic map of the aroma of the wild strawberry Profumata di Tortona (PdT), an ancient clone of F. moschata, considered as one of the most fragrant strawberry types of all. Comparison with the more renowned woodland strawberry Regina delle Valli (RdV), an aromatic cultivar of F. vesca, revealed a significant enrichment in the total level of esters, alcohols and furanones and a reduction in the content of ketones in in the aroma of PdT berries. Among esters, particularly relevant was the enhanced accumulation of methyl anthranilate, responsible for the intensive sweetish impression of wild strawberries. Interestingly, increased ester accumulation in PdT fruits correlated with enhanced expression of the Strawberry Alcohol Acyltransferase (SAAT) gene, a key regulator of flavor biogenesis in ripening berries. We also detected a remarkable 900-fold increase in the level of mesifurane, the furanone conferring the typical caramel notes to most wild species.

19.
Cell Rep ; 6(1): 32-43, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24388746

RESUMO

The acidification of endomembrane compartments is essential for enzyme activities, sorting, trafficking, and trans-membrane transport of various compounds. Vacuoles are mildly acidic in most plant cells because of the action of V-ATPase and/or pyrophosphatase proton pumps but are hyperacidified in specific cells by mechanisms that remained unclear. Here, we show that the blue petal color of petunia ph mutants is due to a failure to hyperacidify vacuoles. We report that PH1 encodes a P3B-ATPase, hitherto known as Mg2(+) transporters in bacteria only, that resides in the vacuolar membrane (tonoplast). In vivo nuclear magnetic resonance and genetic data show that PH1 is required and, together with the tonoplast H(+) P3A-ATPase PH5, sufficient to hyperacidify vacuoles. PH1 has no H(+) transport activity on its own but can physically interact with PH5 and boost PH5 H(+) transport activity. Hence, the hyperacidification of vacuoles in petals, and possibly other tissues, relies on a heteromeric P-ATPase pump.


Assuntos
Flores/metabolismo , Petunia/metabolismo , Pigmentação , ATPases Translocadoras de Prótons/metabolismo , Prótons , Vacúolos/metabolismo , Sequência de Aminoácidos , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Mutação , Petunia/enzimologia , Filogenia , ATPases Translocadoras de Prótons/genética , Vacúolos/enzimologia
20.
PLoS One ; 8(7): e68752, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874747

RESUMO

Silver nanoparticles (AgNPs) are widely used in commercial products, and there are growing concerns about their impact on the environment. Information about the molecular interaction of AgNPs with plants is lacking. To increase our understanding of the mechanisms involved in plant responses to AgNPs and to differentiate between particle specific and ionic silver effects we determined the morphological and proteomic changes induced in Eruca sativa (commonly called rocket) in response to AgNPs or AgNO3. Seedlings were treated for 5 days with different concentrations of AgNPs or AgNO3. A similar increase in root elongation was observed when seedlings were exposed to 10 mg Ag L(1) of either PVP-AgNPs or AgNO3. At this concentration we performed electron microscopy investigations and 2-dimensional electrophoresis (2DE) proteomic profiling. The low level of overlap of differentially expressed proteins indicates that AgNPs and AgNO3 cause different plant responses. Both Ag treatments cause changes in proteins involved in the redox regulation and in the sulfur metabolism. These responses could play an important role to maintain cellular homeostasis. Only the AgNP exposure cause the alteration of some proteins related to the endoplasmic reticulum and vacuole indicating these two organelles as targets of the AgNPs action. These data add further evidences that the effects of AgNPs are not simply due to the release of Ag ions.


Assuntos
Brassicaceae/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Proteoma/metabolismo , Nitrato de Prata/toxicidade , Prata/toxicidade , Análise de Variância , Brassicaceae/anatomia & histologia , Brassicaceae/metabolismo , Cromatografia Líquida , Primers do DNA/genética , Relação Dose-Resposta a Droga , Eletroforese em Gel Bidimensional , Retículo Endoplasmático/metabolismo , Microscopia Eletrônica de Transmissão , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA