Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(12): e0278184, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36490262

RESUMO

BACKGROUND: Diarrhea is one of the major cause of death and morbidity around the world. OBJECTIVES: This scoping review summarizes existing frameworks that aim to mitigate the risks of waterborne diarrheal diseases and describe the strengths and weaknesses of these frameworks. ELIGIBILITY CRITERIA: Published frameworks designed to mitigate the risks of waterborne diarrheal diseases. Frameworks published in English, from around the world and published since inception to date. SOURCES OF EVIDENCE: PubMed, Scopus, Web of Science, Google Scholar, Google Free Search, organization websites and reference lists of identified sources. CHARTING METHODS: Data were charted using the Joanna Briggs Institute tool. Results were summarized and described narratively. A criterion to score the strengths and weaknesses of the included frameworks was also developed. RESULTS: Five frameworks were identified including: the hygiene improvement framework, community led total sanitation, global action plan for pneumonia and diarrhea, participatory hygiene and sanitation transformation, and sanitation and family education. These frameworks shared several common components, including identification of problems and risk factors, identification and implementation of interventions, and evaluation and monitoring. The frameworks had several interventions including different infrastructure, health promotion and education, enabling environment and clinical treatments. Most of the frameworks included health promotion and education. All the frameworks were strengthened by including strategies for implementing and delivering intervention, human resource aspect, community involvement, monitoring, and evaluation. The main weakness included not having components for collecting, storing, and transferring electronic data and the frameworks not being specifically for mitigating waterborne diarrheal diseases. In addition, the identified frameworks were found to be effective in mitigating the risk of diarrhea diseases among other health effects. CONCLUSIONS: Existing frameworks should be updated specifically for mitigating waterborne diarrheal diseases that includes the strengths and addresses weaknesses of reviewed frameworks.


Assuntos
Higiene , Saneamento , Humanos , Diarreia/epidemiologia , Diarreia/prevenção & controle , Promoção da Saúde , Morbidade
2.
Syst Rev ; 11(1): 73, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35436979

RESUMO

BACKGROUND: Waterborne diarrhea diseases are among the leading causes of morbidity and mortality globally. These diseases can be mitigated by implementing various interventions. We reviewed the literature to identify available interventions to mitigate the risk of waterborne diarrheal diseases. METHODS: We conducted a systematic database review of CINAHL (Cumulative Index to Nursing and Allied Health Literature), PubMed, Web of Science Core Collection, Cochrane library, Scopus, African Index Medicus (AIM), and LILACS (Latin American and Caribbean Health Sciences Literature). Our search was limited to articles published between 2009 and 2020. We conducted the review using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement checklist. The identified studies were qualitatively synthesized. RESULTS: Our initial search returned 28 773 articles of which 56 studies met the inclusion criteria. The included studies reported interventions, including vaccines for rotavirus disease (monovalent, pentavalent, and Lanzhou lamb vaccine); enhanced water filtration for preventing cryptosporidiosis, Vi polysaccharide for typhoid; cholera 2-dose vaccines, water supply, water treatment and safe storage, household disinfection, and hygiene promotion for controlling cholera outbreaks. CONCLUSION: We retrieved few studies on interventions against waterborne diarrheal diseases in low-income countries. Interventions must be specific to each type of waterborne diarrheal disease to be effective. Stakeholders must ensure collaboration in providing and implementing multiple interventions for the best outcomes. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42020190411 .


Assuntos
Cólera , Vacinas , Animais , Região do Caribe , Cólera/prevenção & controle , Diarreia/prevenção & controle , Surtos de Doenças , Humanos , Ovinos
3.
J Geod ; 93(11): 2263-2273, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31920223

RESUMO

NASA maintains and operates a global network of Very Long Baseline Interferometry (VLBI), Satellite Laser Ranging (SLR), and Global Navigation Satellite System (GNSS) ground stations as part of the NASA Space Geodesy Program. The NASA Space Geodesy Network (NSGN) provides the geodetic products that support Earth observations and the related science requirements as outlined by the US National Research Council (NRC 2010, 2018). The Global Geodetic Observing System (GGOS) and the NRC have set an ambitious goal of improving the Terrestrial Reference Frame (TRF) to have an accuracy of 1 millimeter and stability of 0.1 millimeters per year, an order of magnitude beyond current capabilities. NASA and its partners within GGOS are addressing this challenge by planning and implementing modern geodetic stations co-located at existing and new sites around the world. In 2013, NASA demonstrated the performance of its next-generation systems at the prototype next-generation core site at NASA's Goddard Geophysical and Astronomical Observatory in Greenbelt, Maryland. Implementation of a new broadband VLBI station in Hawaii was completed in 2016. NASA is currently implementing new VLBI and SLR stations in Texas and is planning the replacement of its other aging domestic and international legacy stations. In this article, we describe critical gaps in the current global network and discuss how the new NSGN will expand the global geodetic coverage and ultimately improve the geodetic products. We also describe the characteristics of a modern NSGN site and the capabilities of the next-generation NASA SLR and VLBI systems. Finally, we outline the plans for efficiently operating the NSGN by centralizing and automating the operations of the new geodetic stations.

4.
Folia Morphol (Warsz) ; 76(4): 582-589, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28612917

RESUMO

Glutamate is the most abundant excitatory neurotransmitter in the central nervous system, and is stored and released by both neurons and astrocytes. Despite the important role of glutamate as a neurotransmitter, high levels of extracellular glutamate can result in excitotoxicity and apoptosis. Monosodium glutamate (MSG) is a naturally occurring sodium salt of glutamic acid that is used as a flavour enhancer in many processed foods. Neonatal exposure to MSG has been shown to result in neurodegeneration in several forebrain regions, characterised by neuronal loss and neuroendocrine abnormalities. However, the brainstem effects of neonatal MSG exposure have not been investigated. It is therefore hypothesized that MSG exposure during the early postnatal period would impact brainstem lower motor neurons involved in feeding behaviour. The effect of neonatal MSG exposure on brainstem lower motor neurons was investigated by exposing rat pups to either 4 mg/g MSG or saline from postnatal day (P) 4 through 10. On P28, brains were preserved by vascular perfusion with fixative, frozen sectioned and stained for Nïssl substance. The number, size and shape of brainstem motor neurons were compared between MSG and saline-exposed animals. MSG exposure had no impact on the total number of neurons in the nuclei examined. However, MSG exposure was associated with a significant increase in the number of round somata in both the trigeminal and facial nuclei. Furthermore, MSG exposure resulted in significantly smaller neurons in all motor nuclei examined. These results suggest that neonatal exposure to MSG impacts the development of brainstem lower motor neurons which may impact feeding and swallowing behaviours in young animals.

5.
Rev Environ Contam Toxicol ; 222: 111-70, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22990947

RESUMO

Drinking water is the most important single source of human exposure to gastroenteric diseases, mainly as a result of the ingestion of microbial contaminated water. Waterborne microbial agents that pose a health risk to humans include enteropathogenic bacteria, viruses, and protozoa. Therefore, properly assessing whether these hazardous agents enter drinking water supplies, and if they do, whether they are disinfected adequately, are undoubtedly aspects critical to protecting public health. As new pathogens emerge, monitoring for relevant indicator microorganisms (e.g., process microbial indicators, fecal indicators, and index and model organisms) is crucial to ensuring drinking water safety. Another crucially important step to maintaining public health is implementing Water Safety Plans (WSPs), as is recommended by the current WHO Guidelines for Drinking Water Quality. Good WSPs include creating health-based targets that aim to reduce microbial risks and adverse health effects to which a population is exposed through drinking water. The use of disinfectants to inactivate microbial pathogens in drinking water has played a central role in reducing the incidence of waterborne diseases and is considered to be among the most successful interventions for preserving and promoting public health. Chlorine-based disinfectants are the most commonly used disinfectants and are cheap and easy to use. Free chlorine is an effective disinfectant for bacteria and viruses; however, it is not always effective against C. parvum and G. lamblia. Another limitation of using chlorination is that it produces disinfection by-products (DBPs), which pose potential health risks of their own. Currently, most drinking water regulations aggressively address DBP problems in public water distribution systems. The DBPs of most concern include the trihalomethanes (THMs), the haloacetic acids (HAAs), bromate, and chlorite. However, in the latest edition of the WHO Guidelines for Drinking Water Quality, it is recommended that water disinfection should never be compromised by attempting to control DBPs. The reason for this is that the risks of human illness and death from pathogens in drinking water are much greater than the risks from exposure to disinfectants and disinfection by-products. Nevertheless, if DBP levels exceed regulatory limits, strategies should focus on eliminating organic impurities that foster their formation, without compromising disinfection. As alternatives to chlorine, disinfectants such as chloramines, ozone, chlorine dioxide, and UV disinfection are gaining popularity. Chlorine and each of these disinfectants have individual advantage and disadvantage in terms of cost, efficacy-stability, ease of application, and nature of disinfectant by-products (DBPs). Based on efficiency, ozone is the most efficient disinfectant for inactivating bacteria, viruses, and protozoa. In contrast, chloramines are the least efficient and are not recommended for use as primary disinfectants. Chloramines are favored for secondary water disinfection, because they react more slowly than chlorine and are more persistent in distribution systems. In addition, chloramines produce lower DBP levels than does chlorine, although microbial activity in the distribution system may produce nitrate from monochloramine, when it is used as a residual disinfectant, Achieving the required levels of water quality, particularly microbial inactivation levels, while minimizing DBP formation requires the application of proper risk and disinfection management protocols. In addition, the failure of conventional treatment processes to eliminate critical waterborne pathogens in drinking water demand that improved and/or new disinfection technologies be developed. Recent research has disclosed that nanotechnology may offer solutions in this area, through the use of nanosorbents, nanocatalysts, bioactive nanoparticles, nanostructured catalytic membranes, and nanoparticle-enhanced filtration.


Assuntos
Desinfecção , Água Potável , Guias como Assunto , Internacionalidade
6.
Chromatographia ; 75(19-20): 1165-1176, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23864736

RESUMO

A gas chromatography-mass spectrometry (GC-MS) method was investigated for the simultaneous analysis of two types of endocrine disrupting compounds (EDCs), i.e., alkylphenol ethoxylates and brominated flame retardants (BFRs), by extraction and derivatization followed by GC-MS. Different solid phase extraction (SPE) cartridges (Cleanert PestiCarb, C18, Cleanert-SAX and Florosil), solvents (toluene, tetrahydrofuran, acetone, acetonitrile and ethyl acetate) and bases (NaHCO3, triethylamine and pyridine) were tested and the best chromatographic analysis was achieved by extraction with Strata-X (33 µm, Reverse Phase) cartridge and derivatization with heptafluorobutyric anhydride at 55 °C under Na2CO3 base in hexane. It was observed that APE together with lower substituted PBBs (PBB1, PBB10, PBB18 and PBB49), HBCD and TBBPA can be determined simultaneously under the same GC conditions. This simple and reliable analytical method was applied to determining trace amounts of these compounds from wastewater treatment plant samples. The recoveries of the target compounds from simulated water were above 60 %. The limit of detection ranged from 0.01 to 0.15 µg L-1 and the limit of quantification ranged from 0.05 to 0.66 µg L-1. There were no appreciable differences between filtered and unfiltered wastewater samples from Leeuwkil treatment plant although concentration of target analytes in filtered influent was slightly lower than the concentration of target analytes in unfiltered influent water. The concentrations of the target compounds from the wastewater treatment were determined from LOQ upwards.

7.
J Am Osteopath Assoc ; 92(8): 1056-8, 1992 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-1429067

RESUMO

The authors report a case of eosinophilia-myalgia syndrome with a progressive neuromyopathy. Progressive weakness, myalgia, and dermatitis developed in the patient described after chronic ingestion of high-dose L-tryptophan for insomnia. Laboratory, electrophysiologic, and muscle biopsy results support the diagnosis of an inflammatory myopathy consistent with that of eosinophilia-myalgia syndrome. The patient's weakness led to wheelchair dependency. A review of the literature regarding this disorder shows inconsistent results with steroid and other modes of therapy. After a course of high-dose steroids with long-term tapering and vigorous inpatient and outpatient rehabilitation, the patient was able to walk and function independently within 2 months.


Assuntos
Síndrome de Eosinofilia-Mialgia/tratamento farmacológico , Adulto , Síndrome de Eosinofilia-Mialgia/reabilitação , Feminino , Humanos , Metilprednisolona/uso terapêutico , Prednisona/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA