Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(39): eadj8103, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37774024

RESUMO

Lattice-based constructs, often made by additive manufacturing, are attractive for many applications. Typically, such constructs are made from microscale or larger elements; however, smaller nanoscale components can lead to more unusual properties, including greater strength, lighter weight, and unprecedented resiliencies. Here, solid and hollow nanoparticles (nanoframes and nanocages; frame size: ~15 nanometers) were assembled into colloidal crystals using DNA, and their mechanical strengths were studied. Nanosolid, nanocage, and nanoframe lattices with identical crystal symmetries exhibit markedly different specific stiffnesses and strengths. Unexpectedly, the nanoframe lattice is approximately six times stronger than the nanosolid lattice. Nanomechanical experiments, electron microscopy, and finite element analysis show that this property results from the buckling, densification, and size-dependent strain hardening of nanoframe lattices. Last, these unusual open architectures show that lattices with structural elements as small as 15 nanometers can retain a high degree of strength, and as such, they represent target components for making and exploring a variety of miniaturized devices.


Assuntos
DNA , Nanopartículas , DNA/química , Nanopartículas/química
2.
Mater Today Bio ; 19: 100601, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37063248

RESUMO

Membrane disruption using Bulk Electroporation (BEP) is a widely used non-viral method for delivering biomolecules into cells. Recently, its microfluidic counterpart, Localized Electroporation (LEP), has been successfully used for several applications ranging from reprogramming and engineering cells for therapeutic purposes to non-destructive sampling from live cells for temporal analysis. However, the side effects of these processes on gene expression, that can affect the physiology of sensitive stem cells are not well understood. Here, we use single cell RNA sequencing (scRNA-seq) to investigate the effects of BEP and LEP on murine neural stem cell (NSC) gene expression. Our results indicate that unlike BEP, LEP does not lead to extensive cell death or activation of cell stress response pathways that may affect their long-term physiology. Additionally, our demonstrations show that LEP is suitable for multi-day delivery protocols as it enables better preservation of cell viability and integrity as compared to BEP.

3.
Nano Lett ; 23(8): 3653-3660, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36848135

RESUMO

Delivery of proteins and protein-nucleic acid constructs into live cells enables a wide range of applications from gene editing to cell-based therapies and intracellular sensing. However, electroporation-based protein delivery remains challenging due to the large sizes of proteins, their low surface charge, and susceptibility to conformational changes that result in loss of function. Here, we use a nanochannel-based localized electroporation platform with multiplexing capabilities to optimize the intracellular delivery of large proteins (ß-galactosidase, 472 kDa, 75.38% efficiency), protein-nucleic acid conjugates (protein spherical nucleic acids (ProSNA), 668 kDa, 80.25% efficiency), and Cas9-ribonucleoprotein complex (160 kDa, ∼60% knock-out and ∼24% knock-in) while retaining functionality post-delivery. Importantly, we delivered the largest protein to date using a localized electroporation platform and showed a nearly 2-fold improvement in gene editing efficiencies compared to previous reports. Furthermore, using confocal microscopy, we observed enhanced cytosolic delivery of ProSNAs, which may expand opportunities for detection and therapy.


Assuntos
Sistemas CRISPR-Cas , Ácidos Nucleicos , Sistemas CRISPR-Cas/genética , Edição de Genes , Eletroporação , Proteínas/genética
4.
Proc Natl Acad Sci U S A ; 119(45): e2206756119, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36331995

RESUMO

Quantifying the intrinsic mechanical properties of two-dimensional (2D) materials is essential to predict the long-term reliability of materials and systems in emerging applications ranging from energy to health to next-generation sensors and electronics. Currently, measurements of fracture toughness and identification of associated atomistic mechanisms remain challenging. Herein, we report an integrated experimental-computational framework in which in-situ high-resolution transmission electron microscopy (HRTEM) measurements of the intrinsic fracture energy of monolayer MoS2 and MoSe2 are in good agreement with atomistic model predictions based on an accurately parameterized interatomic potential. Changes in crystalline structures at the crack tip and crack edges, as observed in in-situ HRTEM crack extension tests, are properly predicted. Such a good agreement is the result of including large deformation pathways and phase transitions in the parameterization of the inter-atomic potential. The established framework emerges as a robust approach to determine the predictive capabilities of molecular dynamics models employed in the screening of 2D materials, in the spirit of the materials genome initiative. Moreover, it enables device-level predictions with superior accuracy (e.g., fatigue lifetime predictions of electro- and opto-electronic nanodevices).


Assuntos
Fraturas Ósseas , Humanos , Reprodutibilidade dos Testes
5.
ACS Nano ; 16(10): 15653-15680, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36154011

RESUMO

The emerging field of cell therapy offers the potential to treat and even cure a diverse array of diseases for which existing interventions are inadequate. Recent advances in micro and nanotechnology have added a multitude of single cell analysis methods to our research repertoire. At the same time, techniques have been developed for the precise engineering and manipulation of cells. Together, these methods have aided the understanding of disease pathophysiology, helped formulate corrective interventions at the cellular level, and expanded the spectrum of available cell therapeutic options. This review discusses how micro and nanotechnology have catalyzed the development of cell sorting, cellular engineering, and single cell analysis technologies, which have become essential workflow components in developing cell-based therapeutics. The review focuses on the technologies adopted in research studies and explores the opportunities and challenges in combining the various elements of cell engineering and single cell analysis into the next generation of integrated and automated platforms that can accelerate preclinical studies and translational research.


Assuntos
Engenharia Celular , Nanotecnologia , Fluxo de Trabalho , Nanotecnologia/métodos , Terapia Baseada em Transplante de Células e Tecidos , Pesquisa Translacional Biomédica
6.
Sci Adv ; 8(29): eabn7637, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35867793

RESUMO

Manipulation of cells for applications such as biomanufacturing and cell-based therapeutics involves introducing biomolecular cargoes into cells. However, successful delivery is a function of multiple experimental factors requiring several rounds of optimization. Here, we present a high-throughput multiwell-format localized electroporation device (LEPD) assisted by deep learning image analysis that enables quick optimization of experimental factors for efficient delivery. We showcase the versatility of the LEPD platform by successfully delivering biomolecules into different types of adherent and suspension cells. We also demonstrate multicargo delivery with tight dosage distribution and precise ratiometric control. Furthermore, we used the platform to achieve functional gene knockdown in human induced pluripotent stem cells and used the deep learning framework to analyze protein expression along with changes in cell morphology. Overall, we present a workflow that enables combinatorial experiments and rapid analysis for the optimization of intracellular delivery protocols required for genetic manipulation.


Assuntos
Aprendizado Profundo , Células-Tronco Pluripotentes Induzidas , Engenharia Celular , Eletroporação/métodos , Humanos , Fluxo de Trabalho
7.
ACS Nano ; 16(5): 7937-7946, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35500232

RESUMO

Nondestructive cell membrane permeabilization systems enable the intracellular delivery of exogenous biomolecules for cell engineering tasks as well as the temporal sampling of cytosolic contents from live cells for the analysis of dynamic processes. Here, we report a microwell array format live-cell analysis device (LCAD) that can perform localized-electroporation induced membrane permeabilization, for cellular delivery or sampling, and directly interfaces with surface-based biosensors for analyzing the extracted contents. We demonstrate the capabilities of the LCAD via an automated high-throughput workflow for multimodal analysis of live-cell dynamics, consisting of quantitative measurements of enzyme activity using self-assembled monolayers for MALDI mass spectrometry (SAMDI) and deep-learning enhanced imaging and analysis. By combining a fabrication protocol that enables robust assembly and operation of multilayer devices with embedded gold electrodes and an automated imaging workflow, we successfully deliver functional molecules (plasmid and siRNA) into live cells at multiple time-points and track their effect on gene expression and cell morphology temporally. Furthermore, we report sampling performance enhancements, achieving saturation levels of protein tyrosine phosphatase activity measured from as few as 60 cells, and demonstrate control over the amount of sampled contents by optimization of electroporation parameters using a lumped model. Lastly, we investigate the implications of cell morphology on electroporation-induced sampling of fluorescent molecules using a deep-learning enhanced image analysis workflow.


Assuntos
Eletroporação , Microfluídica , Microfluídica/métodos , RNA Interferente Pequeno/genética , Plasmídeos , Ouro/química
8.
Small ; 18(20): e2107795, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35315229

RESUMO

Genome engineering of cells using CRISPR/Cas systems has opened new avenues for pharmacological screening and investigating the molecular mechanisms of disease. A critical step in many such studies is the intracellular delivery of the gene editing machinery and the subsequent manipulation of cells. However, these workflows often involve processes such as bulk electroporation for intracellular delivery and fluorescence activated cell sorting for cell isolation that can be harsh to sensitive cell types such as human-induced pluripotent stem cells (hiPSCs). This often leads to poor viability and low overall efficacy, requiring the use of large starting samples. In this work, a fully automated version of the nanofountain probe electroporation (NFP-E) system, a nanopipette-based single-cell electroporation method is presented that provides superior cell viability and efficiency compared to traditional methods. The automated system utilizes a deep convolutional network to identify cell locations and a cell-nanopipette contact algorithm to position the nanopipette over each cell for the application of electroporation pulses. The automated NFP-E is combined with microconfinement arrays for cell isolation to demonstrate a workflow that can be used for CRISPR/Cas9 gene editing and cell tracking with potential applications in screening studies and isogenic cell line generation.


Assuntos
Aprendizado Profundo , Células-Tronco Pluripotentes Induzidas , Sistemas CRISPR-Cas/genética , Eletroporação/métodos , Edição de Genes/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo
9.
Small ; 18(1): e2105194, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34783451

RESUMO

Annihilation of vacancy clusters in monolayer molybdenum diselenide (MoSe2 ) under electron beam irradiation is reported. In situ high-resolution transmission electron microscopy observation reveals that the annihilation is achieved by diffusion of vacancies to the free edge near the vacancy clusters. Monte Carlo simulations confirm that it is energetically favorable for the vacancies to locate at the free edge. By computing the minimum energy path for the annihilation of one vacancy cluster as a case study, it is further shown that electron beam irradiation and pre-stress in the suspended MoSe2 monolayer are necessary for the vacancies to overcome the energy barriers for diffusion. The findings suggest a new mechanism of vacancy healing in 2D materials and broaden the capability of electron beam for defect engineering of 2D materials, a promising way of tuning their properties for engineering applications.

10.
SLAS Technol ; 26(1): 26-36, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33449846

RESUMO

Single-cell delivery platforms like microinjection and nanoprobe electroporation enable unparalleled control over cell manipulation tasks but are generally limited in throughput. Here, we present an automated single-cell electroporation system capable of automatically detecting cells with artificial intelligence (AI) software and delivering exogenous cargoes of different sizes with uniform dosage. We implemented a fully convolutional network (FCN) architecture to precisely locate the nuclei and cytosol of six cell types with various shapes and sizes, using phase contrast microscopy. Nuclear staining or reporter fluorescence was used along with phase contrast images of cells within the same field of view to facilitate the manual annotation process. Furthermore, we leveraged the near-human inference capabilities of the FCN network in detecting stained nuclei to automatically generate ground-truth labels of thousands of cells within seconds, and observed no statistically significant difference in performance compared to training with manual annotations. The average detection sensitivity and precision of the FCN network were 95±1.7% and 90±1.8%, respectively, outperforming a traditional image-processing algorithm (72±7.2% and 72±5.5%) used for comparison. To test the platform, we delivered fluorescent-labeled proteins into adhered cells and measured a delivery efficiency of 90%. As a demonstration, we used the automated single-cell electroporation platform to deliver Cas9-guide RNA (gRNA) complexes into an induced pluripotent stem cell (iPSC) line to knock out a green fluorescent protein-encoding gene in a population of ~200 cells. The results demonstrate that automated single-cell delivery is a useful cell manipulation tool for applications that demand throughput, control, and precision.


Assuntos
Aprendizado Profundo , Edição de Genes , Inteligência Artificial , Computadores , Eletroporação , Humanos
11.
Adv Mater ; 33(5): e2005275, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33349995

RESUMO

Kirigami structures provide a promising approach to transform flat films into 3D complex structures that are difficult to achieve by conventional fabrication approaches. By designing the cutting geometry, it is shown that distinct buckling-induced out-of-plane configurations can be obtained, separated by a sharp transition characterized by a critical geometric dimension of the structures. In situ electron microscopy experiments reveal the effect of the ratio between the in-plane cut size and film thickness on out-of-plane configurations. Moreover, geometrically nonlinear finite element analyses (FEA) accurately predict the out-of-plane modes measured experimentally, their transition as a function of cut geometry, and provide the stress-strain response of the kirigami structures. The combined computational-experimental approach and results reported here represent a step forward in the characterization of thin films experiencing buckling-induced out-of-plane shape transformations and provide a path to control 3D configurations of micro- and nanoscale buckling-induced kirigami structures. The out-of-plane configurations promise great utility in the creation of micro- and nanoscale systems that can harness such structural behavior, such as optical scanning micromirrors, novel actuators, and nanorobotics. This work is of particular significance as the kirigami dimensions approach the sub-micrometer scale which is challenging to achieve with conventional micro-electromechanical system technologies.

12.
Acta Biomater ; 122: 236-248, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33359296

RESUMO

Nature's masterfully synthesized biological materials take on greater relevance when viewed through the perspective of evolutionary abundance. The fact that beetles (order Coleoptera) account for a quarter of all extant lifeforms on Earth, makes them prime exponents of evolutionary success. In fact, their forewings are acknowledged as key traits to their radiative-adaptive success, which makes the beetle elytra a model structure for next-generation bioinspired synthetic materials. In this work, the multiscale morphological and mechanical characteristics of a variety of beetle species from the Cetoniinae subfamily are investigated with the aim of unraveling the underlying principles behind Nature's adaptation of the elytral bauplan to differences in body weight spanning three orders of magnitude. Commensurate with the integral implications of size variation in organisms, a combined material, morphological, and mechanical characterization framework, across spatial scales, was pursued. The investigation revealed the simultaneous presence of size-invariant strategies (chemical compositions, layered-fibrous architectures, graded motifs) as well as size-dependent features (scaling of elytral layers and characteristic dimensions of building blocks), synergistically combined to achieve similar levels of biomechanical functionality (stiffness, energy absorption, strength, deformation and toughening mechanisms) in response to developmental and selection constraints. The integral approach here presented seeks to shed light on Nature's solution to the problem of size variation, which underpins the diversity of beetles and the living world.


Assuntos
Besouros , Animais , Evolução Biológica
13.
Small ; 16(51): e2004917, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33241661

RESUMO

In vitro and ex vivo intracellular delivery methods hold the key for releasing the full potential of tissue engineering, drug development, and many other applications. In recent years, there has been significant progress in the design and implementation of intracellular delivery systems capable of delivery at the same scale as viral transfection and bulk electroporation but offering fewer adverse outcomes. This review strives to examine a variety of methods for in vitro and ex vivo intracellular delivery such as flow-through microfluidics, engineered substrates, and automated probe-based systems from the perspective of throughput and control. Special attention is paid to a particularly promising method of electroporation using micro/nanochannel based porous substrates, which expose small patches of cell membrane to permeabilizing electric field. Porous substrate electroporation parameters discussed include system design, cells and cargos used, transfection efficiency and cell viability, and the electric field and its effects on molecular transport. The review concludes with discussion of potential new innovations which can arise from specific aspects of porous substrate-based electroporation platforms and high throughput, high control methods in general.


Assuntos
Eletroporação , Microfluídica , Sobrevivência Celular , Engenharia Tecidual , Transfecção
14.
Small ; 16(43): e2002616, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33006271

RESUMO

Introducing exogenous molecules into cells with high efficiency and dosage control is a crucial step in basic research as well as clinical applications. Here, the capability of the nanofountain probe electroporation (NFP-E) system to deliver proteins and plasmids in a variety of continuous and primary cell types with appropriate dosage control is reported. It is shown that the NFP-E can achieve fine control over the relative expression of two cotransfected plasmids. Finally, the dynamics of electropore closure after the pulsing ends with the NFP-E is investigated. Localized electroporation has recently been utilized to demonstrate the converse process of delivery (sampling), in which a small volume of the cytosol is retrieved during electroporation without causing cell lysis. Single-cell temporal sampling confers the benefit of monitoring the same cell over time and can provide valuable insights into the mechanisms underlying processes such as stem cell differentiation and disease progression. NFP-E parameters that maximize the membrane resealing time, which is essential for increasing the sampled volume and in meeting the challenge of monitoring low copy number biomarkers, are identified. Its application in CRISPR/Cas9 gene editing, stem cell reprogramming, and single-cell sampling studies is envisioned.


Assuntos
Eletroporação , Edição de Genes , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Plasmídeos
15.
J Mech Behav Biomed Mater ; 110: 103914, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32957213

RESUMO

Naturally occurring biological materials with stiff fibers embedded in a ductile matrix are commonly known to achieve excellent balance between stiffness, strength and ductility. In particular, biological composite materials with helicoidal architecture have been shown to exhibit enhanced damage tolerance and increased impact energy absorption. However, the role of fiber reorientation inside the flexible matrix of helicoid composites on their mechanical behaviors have not yet been extensively investigated. In the present work, we introduce a Discontinuous Fiber Helicoid (DFH) composite inspired by both the helicoid microstructure in the cuticle of mantis shrimp and the nacreous architecture of the red abalone shell. We employ 3D printed specimens, analytical models and finite element models to analyze and quantify in-plane fiber reorientation in helicoid architectures with different geometrical features. We also introduce additional architectures, i.e., single unidirectional lamina and mono-balanced architectures, for comparison purposes. Compared with associated mono-balanced architectures, helicoid architectures exhibit less fiber reorientation values and lower values of strain stiffening. The explanation for this difference is addressed in terms of the measured in-plane deformation, due to uniaxial tensile of the laminae, correlated to lamina misorientation with respect to the loading direction and lay-up sequence.


Assuntos
Nácar , Materiais Dentários , Resistência à Tração
16.
Small ; 16(35): e2002229, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32715617

RESUMO

Mechanical metamaterials inspired by the Japanese art of paper folding have gained considerable attention because of their potential to yield deployable and highly tunable assemblies. The inherent foldability of origami structures enlarges the material design space with remarkable properties such as auxeticity and high deformation recoverability and deployability, the latter being key in applications where spatial constraints are pivotal. This work integrates the results of the design, 3D direct laser writing fabrication, and in situ scanning electron microscopic mechanical characterization of microscale origami metamaterials, based on the multimodal assembly of Miura-Ori tubes. The origami-architected metamaterials, achieved by means of microfabrication, display remarkable mechanical properties: stiffness and Poisson's ratio tunable anisotropy, large degree of shape recoverability, multistability, and even reversible auxeticity whereby the metamaterial switches Poisson's ratio sign during deformation. The findings here reported underscore the scalable and multifunctional nature of origami designs, and pave the way toward harnessing the power of origami engineering at small scales.

17.
Small ; 16(26): e2000584, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32452612

RESUMO

Measuring changes in enzymatic activity over time from small numbers of cells remains a significant technical challenge. In this work, a method for sampling the cytoplasm of cells is introduced to extract enzymes and measure their activity at multiple time points. A microfluidic device, termed the live cell analysis device (LCAD), is designed, where cells are cultured in microwell arrays fabricated on polymer membranes containing nanochannels. Localized electroporation of the cells opens transient pores in the cell membrane at the interface with the nanochannels, enabling extraction of enzymes into nanoliter-volume chambers. In the extraction chambers, the enzymes modify immobilized substrates, and their activity is quantified by self-assembled monolayers for matrix-assisted laser desorption/ionization (SAMDI) mass spectrometry. By employing the LCAD-SAMDI platform, protein delivery into cells is demonstrated. Next, it is shown that enzymes can be extracted, and their activity measured without a loss in viability. Lastly, cells are sampled at multiple time points to study changes in phosphatase activity in response to oxidation by hydrogen peroxide. With this unique sampling device and label-free assay format, the LCAD with SAMDI enables a powerful new method for monitoring the dynamics of cellular activity from small populations of cells.


Assuntos
Eletroporação , Ensaios Enzimáticos , Enzimas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Linhagem Celular Tumoral , Células/enzimologia , Ensaios Enzimáticos/instrumentação , Ensaios Enzimáticos/métodos , Enzimas/análise , Enzimas/metabolismo , Humanos , Tempo
18.
J Cell Sci ; 133(6)2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179593

RESUMO

Cells and tissues sense, respond to and translate mechanical forces into biochemical signals through mechanotransduction, which governs individual cell responses that drive gene expression, metabolic pathways and cell motility, and determines how cells work together in tissues. Mechanotransduction often depends on cytoskeletal networks and their attachment sites that physically couple cells to each other and to the extracellular matrix. One way that cells associate with each other is through Ca2+-dependent adhesion molecules called cadherins, which mediate cell-cell interactions through adherens junctions, thereby anchoring and organizing the cortical actin cytoskeleton. This actin-based network confers dynamic properties to cell sheets and developing organisms. However, these contractile networks do not work alone but in concert with other cytoarchitectural elements, including a diverse network of intermediate filaments. This Review takes a close look at the intermediate filament network and its associated intercellular junctions, desmosomes. We provide evidence that this system not only ensures tissue integrity, but also cooperates with other networks to create more complex tissues with emerging properties in sensing and responding to increasingly stressful environments. We will also draw attention to how defects in intermediate filament and desmosome networks result in both chronic and acquired diseases.


Assuntos
Desmossomos , Filamentos Intermediários , Mecanotransdução Celular , Junções Aderentes , Caderinas , Adesão Celular , Citoesqueleto
19.
Methods Mol Biol ; 2050: 59-68, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31468479

RESUMO

In the field of genetic engineering, the modification of genes to produce stable cell lines has a variety of applications ranging from the development of novel therapeutics to patient specific treatments. To successfully generate a cell line, the gene of interest must be delivered into the cell and integrated into the genome. The efficiency of cell line generation systems therefore depends on the efficiency of delivery of genetically modifying molecules such as plasmids and CRISPR/CAS9 complexes. In this work, we describe a localized electroporation-based system to generate stable monoclonal cell lines. By employing the nanofountain probe electroporation (NFP-E) system, single cells in patterned cultures are selectively transfected with plasmids, grown, and harvested to obtain stably expressing cell lines. Methods for microcontact printing, cell culture, electroporation, and harvesting are detailed in this chapter.


Assuntos
Células Clonais/citologia , Eletroporação/instrumentação , Transfecção/instrumentação , Sistemas CRISPR-Cas , Técnicas de Cultura de Células , Células Clonais/química , Edição de Genes/métodos , Células HEK293 , Humanos , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...