Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 201: 110794, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32526590

RESUMO

The intensive use of glyphosate in industrial agriculture may lead to freshwater contamination, encouraging studies of its toxic effect on non-target aquatic organisms. Glyphosate-based commercial formulations contain adjuvants, making them even more toxic than the active ingredient (a.i.) itself. The golden mussel Limnoperna fortunei is a freshwater invasive species which has been found to increase glyphosate dissipation in water and to accelerate eutrophication. The aim of this study is to evaluate the capability of L. fortunei to reduce the concentration of glyphosate in two commercial formulations, Roundup Max® and Glifosato Atanor®. Results were compared with the decay of the a.i. alone and in presence of mussels. Evasive response and toxicity tests were performed in a first set of trials to analyze the response of L. fortunei exposed to Roundup Max® and Glifosato Atanor®. Subsequently, we conducted a 21-day degradation experiment in 2.6-L microcosms applying the following treatments: 6 mg L-1 of technical-grade glyphosate (G), Glifosato Atanor® (A), Roundup Max® (R), 20 mussels in dechlorinated tap water (M), and the combination of mussels and herbicide either in the technical-grade (MG) or formulated form (MA and MR) (all by triplicate). Samples were collected at days 0, 1, 7, 14 and 21. No significant differences in glyphosate decay were found between treatments with mussels (MG: 2.03 ± 0.40 mg L-1; MA: 1.60 ± 0.32 mg L-1; MR: 1.81 ± 0.21 mg L-1), between glyphosate as a.i. and the commercial formulations, and between the commercial formulations, suggesting that the adjuvants did not affect the degrading potential of L. fortunei. In addition to the acceleration of glyphosate dissipation in water, there was an increase in the concentration of dissolved nutrients in water (N-NH4+ and P-PO43-) even higher than that caused by the filtering activity of the mussels, probably resulting from stress or from the degradation of glyphosate and adjuvants. We believe that a larger bioavailability of these nutrients due to glyphosate metabolization mediated by mussels would accelerate eutrophication processes in natural water bodies. The approach used here, where L. fortunei was exposed to two commercial formulations actually used in agricultural practices, sheds light on the potential impact of glyphosate decay on water bodies invaded by this species.


Assuntos
Água Doce/química , Glicina/análogos & derivados , Herbicidas/toxicidade , Espécies Introduzidas/tendências , Mytilidae/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Argininossuccinato Sintase , Biodegradação Ambiental , Proteínas de Escherichia coli , Glicina/toxicidade , Mytilidae/metabolismo , Testes de Toxicidade , Glifosato
2.
Environ Technol ; 40(10): 1250-1261, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29261428

RESUMO

The Río de la Plata, one of the most important estuarine environments in South America that sustains valuable fisheries, is affected by PAH contamination associated with oil industry and port activities. A total of 95 bacteria with potential to degrade phenanthrene were obtained from water samples using traditional culture methods. PCR-RFLP analysis of 16S rDNA partial fragments was used as a screening tool for reducing the number of isolates during diversity studies, obtaining 42 strains with different fingerprint patterns. Phylogenetic analysis indicated that they were affiliated to 19 different genera of Gamma- and Alpha-Proteobacteria, and Actinobacteria. Some of them showed an efficient phenanthrene degradation by HPLC (between 83% and 97%) and surfactant production (between 40% and 55%). They could be an alternative for microbial selection in the degradation of PAHs in this estuarine system. In order to detect and monitor PAH-degrading bacteria in this highly productive area, rDNA amplicons of the 33 isolates, produced by PCR real time, were tested by the high-resolution melting (HRM) technique. After analyzing the generated melting curves, it was possible to accurately distinguish nine patterns corresponding to eight different genera. HRM analysis allowed a differentiation at the species level for genera Pseudomonas, Halomonas and Vibrio. The implementation of this method as a fast and sensitive scanning approach to identify PAH-degrading bacteria, avoiding the sequencing step, would mean an advance in bioremediation technologies.


Assuntos
Bactérias , Hidrocarbonetos Policíclicos Aromáticos , Biodegradação Ambiental , Filogenia , RNA Ribossômico 16S
3.
Chemosphere ; 209: 748-757, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29960942

RESUMO

The joint impact of the glyphosate-based commercial formulation Roundup Max® and the invasive mussel Limnoperna fortunei on phytoplankton and water quality was assessed in Salto Grande reservoir, a scenario were both stressors coexist. We performed an in situ mesocosm approach, through a 7-day experiment using 400-L enclosures. The following treatments were applied by triplicate: addition of 250 mussels (M); addition of 5 mg L-1 of active ingredient (a.i.) in Roundup Max® (R); addition of 250 mussels and 5 mg L-1 of a.i. in Roundup Max® (MR), and controls, without any addition (C). R showed higher total phosphorus (TP) and ammonium nitrogen (NNH4+) concentrations due to the herbicide input, and a significant increase in algal abundance, biovolume and chlorophyll a levels (Chl-a). In M mussels grazed on phytoplankton, which resulted in subsequent phosphates (SRP) release. A decrease in species diversity was observed in R and M with respect to C. In MR, there were higher TP and NNH4+ concentrations, a decrease in biovolume, an antagonistic effect on Chl-a and a synergistic effect on phytoplankton abundance. Species diversity and evenness showed a significant decrease due to the explosive growth of a small and opportunistic Chlorophyta, Spermatozopsis exsultans. The dominance of this species may be due to negative selectivity for S. exsultans and/or release of potential competitors by L. fortunei, and to the input of nutrients by Roundup Max® and/or removal of competitors by its toxicity.


Assuntos
Bivalves/química , Água Doce/microbiologia , Praguicidas/efeitos adversos , Fitoplâncton/microbiologia , Animais , Argentina , Poluentes Químicos da Água/análise
4.
Artigo em Inglês | MEDLINE | ID: mdl-27449270

RESUMO

Microcystis are known for their potential ability to synthesize toxins, mainly microcystins (MCs). In order to evaluate the effects of temperature on chlorophyll a (Chl a), growth, physiological responses and toxin production of a native Microcystis aeruginosa, we exposed the cells to low (23°C) and high (29°C) temperature in addition to a 26°C control treatment. Exponential growth rate was significantly higher at 29°C compared to 23°C and control, reaching 0.43, 0.32 and 0.33day(-)(1) respectively. In addition, there was a delay of the start of exponential growth at 23°C. However, the intracellular concentration of Chl a decreased significantly due to temperature change. A significant increase in intracellular ROS was observed in coincidence with the activation of enzymatic antioxidant catalase (CAT) during the first two days of exposure to 23° and 29°C in comparison to the control experiment, decreasing thereafter to nearly initial values. Five MCs were determined by LC-MS/MS analysis. In the experiments, the highest MC concentration, 205fg [Leu(1)] MC-LR.cell(-1) expressed as MC-LR equivalent was measured in the beginning of the experiment and subsequently declined to 160fg.cell(-1) on day 2 and 70fg.cell(-1) on day 4 in cells exposed to 29°C. The same trend was observed for all other MCs except for the least abundant MC-LR which showed a continuous increase during exposure time. Our results suggest a high ability of M. aeruginosa to perceive ROS and to rapidly initiate antioxidant defenses with a differential response on MC production.


Assuntos
Antioxidantes/metabolismo , Proteínas de Bactérias/metabolismo , Catalase/metabolismo , Microcistinas/metabolismo , Microcystis/enzimologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Temperatura , Adaptação Fisiológica , Biomassa , Clorofila/metabolismo , Clorofila A , Cromatografia Líquida , Microcystis/crescimento & desenvolvimento , Espectrometria de Massas em Tandem , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...