Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 14(11): 715, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919293

RESUMO

Death receptor ligand TRAIL is a promising cancer therapy due to its ability to selectively trigger extrinsic apoptosis in cancer cells. However, TRAIL-based therapies in humans have shown limitations, mainly due inherent or acquired resistance of tumor cells. To address this issue, current efforts are focussed on dissecting the intracellular signaling pathways involved in resistance to TRAIL, to identify strategies that sensitize cancer cells to TRAIL-induced cytotoxicity. In this work, we describe the oncogenic MEK5-ERK5 pathway as a critical regulator of cancer cell resistance to the apoptosis induced by death receptor ligands. Using 2D and 3D cell cultures and transcriptomic analyses, we show that ERK5 controls the proteostasis of TP53INP2, a protein necessary for full activation of caspase-8 in response to TNFα, FasL or TRAIL. Mechanistically, ERK5 phosphorylates and induces ubiquitylation and proteasomal degradation of TP53INP2, resulting in cancer cell resistance to TRAIL. Concordantly, ERK5 inhibition or genetic deletion, by stabilizing TP53INP2, sensitizes cancer cells to the apoptosis induced by recombinant TRAIL and TRAIL/FasL expressed by Natural Killer cells. The MEK5-ERK5 pathway regulates cancer cell proliferation and survival, and ERK5 inhibitors have shown anticancer activity in preclinical models of solid tumors. Using endometrial cancer patient-derived xenograft organoids, we propose ERK5 inhibition as an effective strategy to sensitize cancer cells to TRAIL-based therapies.


Assuntos
Apoptose , Neoplasias , Humanos , Transdução de Sinais , Proteínas Reguladoras de Apoptose , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Receptores de Morte Celular , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Linhagem Celular Tumoral , Proteínas Nucleares/metabolismo
2.
Cell Mol Life Sci ; 79(10): 524, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123565

RESUMO

Endometrial cancer (EC) is the most common type of gynecologic cancer in women of developed countries. Despite surgery combined with chemo-/radiotherapy regimens, overall survival of patients with high-risk EC tumors is poor, indicating a need for novel therapies. The MEK5-ERK5 pathway is activated in response to growth factors and to different stressors, including oxidative stress and cytokines. Previous evidence supports a role for the MEK5-ERK5 pathway in the pathology of several cancers. We investigated the role of ERK5 in EC. In silico analysis of the PanCancer Atlas dataset showed alterations in components of the MEK5-ERK5 pathway in 48% of EC patients. Here, we show that ERK5 inhibition or silencing decreased EGF-induced EC cell proliferation, and that genetic deletion of MEK5 resulted in EC impaired proliferation and reduced tumor growth capacity in nude mice. Pharmacologic inhibition or ERK5 silencing impaired NF-kB pathway in EC cells and xenografts. Furthermore, we found a positive correlation between ERK5 and p65/RELA protein levels in human EC tumor samples. Mechanistically, genetic or pharmacologic impairment of ERK5 resulted in downregulation of NEMO/IKKγ expression, leading to impaired p65/RELA activity and to apoptosis in EC cells and xenografts, which was rescued by NEMO/IKKγ overexpression. Notably, ERK5 inhibition, MEK5 deletion or NF-kB inhibition sensitized EC cells to standard EC chemotherapy (paclitaxel/carboplatin) toxicity, whereas ERK5 inhibition synergized with paclitaxel to reduce tumor xenograft growth in mice. Together, our results suggest that the ERK5-NEMO-NF-κB pathway mediates EC cell proliferation and survival. We propose the ERK5/NF-κB axis as new target for EC treatment.


Assuntos
Neoplasias do Endométrio , NF-kappa B , Animais , Carboplatina , Proliferação de Células , Citocinas/metabolismo , Neoplasias do Endométrio/genética , Fator de Crescimento Epidérmico/metabolismo , Feminino , Humanos , MAP Quinase Quinase 5/genética , MAP Quinase Quinase 5/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Nus , NF-kappa B/genética , NF-kappa B/metabolismo , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico
3.
Front Cell Dev Biol ; 9: 742049, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805151

RESUMO

Autophagy is a highly conserved intracellular process that preserves cellular homeostasis by mediating the lysosomal degradation of virtually any component of the cytoplasm. Autophagy is a key instrument of cellular response to several stresses, including endoplasmic reticulum (ER) stress. Cancer cells have developed high dependency on autophagy to overcome the hostile tumor microenvironment. Thus, pharmacological activation or inhibition of autophagy is emerging as a novel antitumor strategy. ERK5 is a novel member of the MAP kinase family that is activated in response to growth factors and different forms of stress. Recent work has pointed ERK5 as a major player controlling cancer cell proliferation and survival. Therefore small-molecule inhibitors of ERK5 have shown promising therapeutic potential in different cancer models. Here, we report for the first time ERK5 as a negative regulator of autophagy. Thus, ERK5 inhibition or silencing induced autophagy in a panel of human cancer cell lines with different mutation patterns. As reported previously, ERK5 inhibitors (ERK5i) induced apoptotic cancer cell death. Importantly, we found that autophagy mediates the cytotoxic effect of ERK5i, since ATG5-/- autophagy-deficient cells viability was not affected by these compounds. Mechanistically, ERK5i stimulated autophagic flux independently of the canonical regulators AMPK or mTORC1. Moreover, ERK5 inhibition resulted in ER stress and activation of the Unfolded Protein Response (UPR) pathways. Specifically, ERK5i induced expression of the ER luminal chaperone BiP (a hallmark of ER stress), the UPR markers CHOP and ATF4, and the spliced form of XBP1. Pharmacological inhibition of UPR with chemical chaperone TUDC, or ATF4 silencing, resulted in impaired ERK5i-mediated UPR, autophagy and cytotoxicity. Overall, our results suggest that ERK5 inhibition induces autophagy-mediated cancer cell death by activating ER stress. Since ERK5 inhibition sensitizes cancer cells and tumors to chemotherapy, future work will determine the relevance of UPR and autophagy in the combined use of chemotherapy and ERK5i to tackle Cancer.

4.
Autophagy ; 17(6): 1349-1366, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32397857

RESUMO

ABTL0812 is a first-in-class small molecule with anti-cancer activity, which is currently in clinical evaluation in a phase 2 trial in patients with advanced endometrial and squamous non-small cell lung carcinoma (NCT03366480). Previously, we showed that ABTL0812 induces TRIB3 pseudokinase expression, resulting in the inhibition of the AKT-MTORC1 axis and macroautophagy/autophagy-mediated cancer cell death. However, the precise molecular determinants involved in the cytotoxic autophagy caused by ABTL0812 remained unclear. Using a wide range of biochemical and lipidomic analyses, we demonstrated that ABTL0812 increases cellular long-chain dihydroceramides by impairing DEGS1 (delta 4-desaturase, sphingolipid 1) activity, which resulted in sustained ER stress and activated unfolded protein response (UPR) via ATF4-DDIT3-TRIB3 that ultimately promotes cytotoxic autophagy in cancer cells. Accordingly, pharmacological manipulation to increase cellular dihydroceramides or incubation with exogenous dihydroceramides resulted in ER stress, UPR and autophagy-mediated cancer cell death. Importantly, we have optimized a method to quantify mRNAs in blood samples from patients enrolled in the ongoing clinical trial, who showed significant increased DDIT3 and TRIB3 mRNAs. This is the first time that UPR markers are reported to change in human blood in response to any drug treatment, supporting their use as pharmacodynamic biomarkers for compounds that activate ER stress in humans. Finally, we found that MTORC1 inhibition and dihydroceramide accumulation synergized to induce autophagy and cytotoxicity, phenocopying the effect of ABTL0812. Given the fact that ABTL0812 is under clinical development, our findings support the hypothesis that manipulation of dihydroceramide levels might represents a new therapeutic strategy to target cancer.Abbreviations: 4-PBA: 4-phenylbutyrate; AKT: AKT serine/threonine kinase; ATG: autophagy related; ATF4: activating transcription factor 4; Cer: ceramide; DDIT3: DNA damage inducible transcript 3; DEGS1: delta 4-desaturase, sphingolipid 1; dhCer: dihydroceramide; EIF2A: eukaryotic translation initiation factor 2 alpha; EIF2AK3: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; HSPA5: heat shock protein family A (Hsp70) member 5; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MEF: mouse embryonic fibroblast; MTORC1: mechanistic target of rapamycin kinase complex 1; NSCLC: non-small cell lung cancer; THC: Δ9-tetrahydrocannabinol; TRIB3: tribbles pseudokinase 3; XBP1: X-box binding protein 1; UPR: unfolded protein response.


Assuntos
Autofagia/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Fibroblastos/efeitos dos fármacos , Ácidos Linoleicos/farmacologia , Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/metabolismo , Ceramidas/farmacologia , Fibroblastos/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico
5.
Commun Biol ; 3(1): 366, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647375

RESUMO

Elucidating the contribution of somatic mutations to cancer is essential for personalized medicine. STK11 (LKB1) appears to be inactivated in human cancer. However, somatic missense mutations also occur, and the role/s of these alterations to this disease remain unknown. Here, we investigated the contribution of four missense LKB1 somatic mutations in tumor biology. Three out of the four mutants lost their tumor suppressor capabilities and showed deficient kinase activity. The remaining mutant retained the enzymatic activity of wild type LKB1, but induced increased cell motility. Mechanistically, LKB1 mutants resulted in differential gene expression of genes encoding vesicle trafficking regulating molecules, adhesion molecules and cytokines. The differentially regulated genes correlated with protein networks identified through comparative secretome analysis. Notably, three mutant isoforms promoted tumor growth, and one induced inflammation-like features together with dysregulated levels of cytokines. These findings uncover oncogenic roles of LKB1 somatic mutations, and will aid in further understanding their contributions to cancer development and progression.


Assuntos
Biomarcadores Tumorais/genética , Movimento Celular , Inflamação/patologia , Neoplasias Pulmonares/patologia , Melanoma/patologia , Mutação de Sentido Incorreto , Proteínas Serina-Treonina Quinases/genética , Quinases Proteína-Quinases Ativadas por AMP , Animais , Apoptose , Biomarcadores Tumorais/metabolismo , Ciclo Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Melanoma/genética , Melanoma/imunologia , Melanoma/metabolismo , Camundongos , Camundongos Nus , Fosforilação , Isoformas de Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Int J Mol Sci ; 21(6)2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32209980

RESUMO

The MAP kinase ERK5 contains an N-terminal kinase domain and a unique C-terminal tail including a nuclear localization signal and a transcriptional activation domain. ERK5 is activated in response to growth factors and stresses and regulates transcription at the nucleus by either phosphorylation or interaction with transcription factors. MEK5-ERK5 pathway plays an important role regulating cancer cell proliferation and survival. Therefore, it is important to define the precise molecular mechanisms implicated in ERK5 nucleo-cytoplasmic shuttling. We previously described that the molecular chaperone Hsp90 stabilizes and anchors ERK5 at the cytosol and that ERK5 nuclear shuttling requires Hsp90 dissociation. Here, we show that MEK5 or overexpression of Cdc37-mechanisms that increase nuclear ERK5-induced ERK5 Small Ubiquitin-related Modifier (SUMO)-2 modification at residues Lys6/Lys22 in cancer cells. Furthermore, mutation of these SUMO sites abolished the ability of ERK5 to translocate to the nucleus and to promote prostatic cancer PC-3 cell proliferation. We also show that overexpression of the SUMO protease SENP2 completely abolished endogenous ERK5 nuclear localization in response to epidermal growth factor (EGF) stimulation. These results allow us to propose a more precise mechanism: in response to MEK5 activation, ERK5 SUMOylation favors the dissociation of Hsp90 from the complex, allowing ERK5 nuclear shuttling and activation of the transcription.


Assuntos
Transporte Ativo do Núcleo Celular/genética , Proteína Quinase 7 Ativada por Mitógeno/genética , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Animais , Biomarcadores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Células Cultivadas , Chaperoninas/genética , Chaperoninas/metabolismo , Ativação Enzimática , Imunofluorescência , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Lisina/metabolismo , Modelos Biológicos , Ligação Proteica , Sumoilação , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA