Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0297006, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743704

RESUMO

Epigenetic ageing in a human context, has been used to better understand the relationship between age and factors such as lifestyle and genetics. In an ecological setting, it has been used to predict the age of individual animals for wildlife management. Despite the importance of epigenetic ageing in a range of research fields, the assays to measure epigenetic ageing are either expensive on a large scale or complex. In this study, we aimed to improve the efficiency and sequencing quality of an existing epigenetic ageing assay for the Australian Lungfish (Neoceratodus forsteri). We used an enzyme-based alternative to bisulfite conversion to reduce DNA fragmentation and evaluated its performance relative to bisulfite conversion. We found the sequencing quality to be 12% higher with the enzymatic alternative compared to bisulfite treatment (p-value < 0.01). This new enzymatic based approach, although currently double the cost of bisulfite treatment can increases the throughput and sequencing quality. We envisage this assay setup being adopted increasingly as the scope and scale of epigenetic ageing research continues to grow.


Assuntos
Envelhecimento , Epigênese Genética , Sulfitos , Animais , Envelhecimento/genética , Sulfitos/química , Peixes/genética , Análise de Sequência de DNA/métodos , Metilação de DNA , Fragmentação do DNA
2.
Mol Biol Evol ; 40(9)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37671664

RESUMO

Nonadaptive hypotheses on the evolution of eukaryotic genome size predict an expansion when the process of purifying selection becomes weak. Accordingly, species with huge genomes, such as lungfish, are expected to show a genome-wide relaxation signature of selection compared with other organisms. However, few studies have empirically tested this prediction using genomic data in a comparative framework. Here, we show that 1) the newly assembled transcriptome of the Australian lungfish, Neoceratodus forsteri, is characterized by an excess of pervasive transcription, or transcriptional leakage, possibly due to suboptimal transcriptional control, and 2) a significant relaxation signature in coding genes in lungfish species compared with other vertebrates. Based on these observations, we propose that the largest known animal genomes evolved in a nearly neutral scenario where genome expansion is less efficiently constrained.


Assuntos
Peixes , Genômica , Animais , Austrália , Peixes/genética , Tamanho do Genoma , Seleção Genética
3.
BMC Ecol Evol ; 22(1): 57, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501685

RESUMO

BACKGROUND: Approximately 50% of freshwater turtles worldwide are currently threatened by habitat loss, rural development and altered stream flows. Paradoxically, reptiles are understudied organisms, with many species lacking basic geographic distribution and abundance data. The iconic Irwin's turtle, Elseya irwini, belongs to a unique group of Australian endemic freshwater turtles capable of cloacal respiration. Water resource development, increased presence of saltwater crocodiles and its cryptic behaviour, have made sampling for Irwin's turtle in parts of its range problematic, resulting in no confirmed detections across much of its known range for > 25 years. Here, we used environmental DNA (eDNA) analysis for E. irwini detection along its historical and contemporary distribution in the Burdekin, Bowen and Broken River catchments and tributaries. Five replicate water samples were collected at 37 sites across those three river catchments. Environmental DNA was extracted using a glycogen-aided precipitation method and screened for the presence of E. irwini through an eDNA assay targeting a 127 base pair-long fragment of the NADH dehydrogenase 4 (ND4) mitochondrial gene. RESULTS: Elseya irwini eDNA was detected at sites within its historic distribution in the lower Burdekin River, where the species had not been formally recorded for > 25 years, indicating the species still inhabits the lower Burdekin area. We also found higher levels of E. iriwni eDNA within its contemporary distribution in the Bowen and Broken Rivers, matching the prevailing scientific view that these areas host larger populations of E. irwini. CONCLUSIONS: This study constitutes the first scientific evidence of E. irwini presence in the lower Burdekin since the original type specimens were collected as part of its formal description, shortly after the construction of the Burdekin Falls Dam. From the higher percentage of positive detections in the upper reaches of the Broken River (Urannah Creek), we conclude that this area constitutes the core habitat area for the species. Our field protocol comprises a user-friendly, time-effective sampling method. Finally, due to safety risks associated with traditional turtle sampling methods in the Burdekin River (e.g., estuarine crocodiles) we propose eDNA sampling as the most pragmatic detection method available for E. irwini.


Assuntos
DNA Ambiental , Tartarugas , Animais , Austrália , DNA Ambiental/genética , Ecossistema , Rios , Tartarugas/genética
4.
Mol Ecol Resour ; 21(7): 2324-2332, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34161658

RESUMO

Age-based demography is fundamental to management of wild fish populations. Age estimates for individuals can determine rates of change in key life-history parameters such as length, maturity, mortality and fecundity. These age-based characteristics are critical for population viability analysis in endangered species and for developing sustainable harvest strategies. For teleost fish, age has traditionally been determined by counting increments formed in calcified structures such as otoliths. However, the collection of otoliths is lethal and therefore undesirable for threatened species. At a molecular level, age can be predicted by measuring DNA methylation. Here, we use previously identified age-associated sites of DNA methylation in zebrafish (Danio rerio) to develop two epigenetic clocks for three threatened freshwater fish species. One epigenetic clock was developed for the Australian lungfish (Neoceratodus forsteri) and the second for the Murray cod (Maccullochella peelii) and Mary River cod (Maccullochella mariensis). Age estimation models were calibrated using either known-age individuals, ages derived from otoliths or bomb radiocarbon dating of scales. We demonstrate a high Pearson's correlation between the chronological and predicted age in both the Lungfish clock (cor = .98) and Maccullochella clock (cor = .92). The median absolute error rate for both epigenetic clocks was also low (Lungfish = 0.86 years; Maccullochella = 0.34 years). This study demonstrates the transferability of DNA methylation sites for age prediction between highly phylogenetically divergent fish species. Given the method is nonlethal and suited to automation, age prediction by DNA methylation has the potential to improve fisheries and other wildlife management settings.


Assuntos
Espécies em Perigo de Extinção , Rios , Animais , Austrália , Metilação de DNA , Humanos , Peixe-Zebra
5.
Mol Ecol ; 2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29989297

RESUMO

An important challenge for conservation science is to detect declines in intraspecific diversity so that management action can be guided towards populations or species at risk. The lifespan of Australian lungfish (Neoceratodus forsteri) exceeds 80 years, and human impacts on breeding habitat over the last half century may have impeded recruitment, leaving populations dominated by old postreproductive individuals, potentially resulting in a small and declining breeding population. Here, we conduct a "single-sample" evaluation of genetic erosion within contemporary populations of the Australian lungfish. Genetic erosion is a temporal decline in intraspecific diversity due to factors such as reduced population size and inbreeding. We examined whether young individuals showed signs of reduced genetic diversity and/or inbreeding using a novel bomb radiocarbon dating method to age lungfish nonlethally, based on 14 C ratios of scales. A total of 15,201 single nucleotide polymorphic (SNP) loci were genotyped in 92 individuals ranging in age from 2 to 77 years old. Standardized individual heterozygosity and individual inbreeding coefficients varied widely within and between riverine populations, but neither was associated with age, so perceived problems with recruitment have not translated into genetic erosion that could be considered a proximate threat to lungfish populations. Conservation concern has surrounded Australian lungfish for over a century. However, our results suggest that long-lived threatened species can maintain stable levels of intraspecific variability when sufficient reproductive opportunities exist over the course of a long lifespan.

6.
PLoS One ; 10(4): e0121858, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25853492

RESUMO

The Australian lungfish is a unique living representative of an ancient dipnoan lineage, listed as 'vulnerable' to extinction under Australia's Environment Protection and Biodiversity Conservation Act 1999. Historical accounts indicate this species occurred naturally in two adjacent river systems in Australia, the Burnett and Mary. Current day populations in other rivers are thought to have arisen by translocation from these source populations. Early genetic work detected very little variation and so had limited power to answer questions relevant for management including how genetic variation is partitioned within and among sub-populations. In this study, we use newly developed microsatellite markers to examine samples from the Burnett and Mary Rivers, as well as from two populations thought to be of translocated origin, Brisbane and North Pine. We test whether there is significant genetic structure among and within river drainages; assign putatively translocated populations to potential source populations; and estimate effective population sizes. Eleven polymorphic microsatellite loci genotyped in 218 individuals gave an average within-population heterozygosity of 0.39 which is low relative to other threatened taxa and for freshwater fishes in general. Based on FST values (average over loci = 0.11) and STRUCTURE analyses, we identify three distinct populations in the natural range, one in the Burnett and two distinct populations in the Mary. These analyses also support the hypothesis that the Mary River is the likely source of translocated populations in the Brisbane and North Pine rivers, which agrees with historical published records of a translocation event giving rise to these populations. We were unable to obtain bounded estimates of effective population size, as we have too few genotype combinations, although point estimates were low, ranging from 29 - 129. We recommend that, in order to preserve any local adaptation in the three distinct populations that they be managed separately.


Assuntos
Espécies em Perigo de Extinção , Peixes/genética , Peixes/fisiologia , Longevidade , Repetições de Microssatélites/genética , Polimorfismo Genético , Animais , Austrália , Loci Gênicos/genética , Genética Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...